ESI
Technology

o poation Meeting the healthcare challenge in a world of complexity!

Language Reference Guide

EsiObjects V4.2

(c) Copyright 1994 - 2004, ESI Technology Corp, Bolton MA

This document contains the intellectual property of its copyright holder(s) and is made
available under alicense. If you are not familiar with the terms of the license, please refer
to the license.txt file that is a part of the distribution kit.

Information in this document is subject to change without notice. Companies, names and
data used in examples herein are fictitious unless otherwise noted. No part of this
document may be reproduced or transmitted in any form or by any means, electronic or

mechanical, for any purpose, without the express written permission of ESI Technology
Corporation.

Trademarks

EsiObjectsis aregistered trademark of ESI Technology Corporation.
GT.M isaregistered trademark of Sanchez Inc.
DSM, Cache, MSM are registered trademarks of InterSystems Corporation.

Microsoft, Visual Basic, Windows and Windows NT are registered trademarks of
Microsoft Corporation.

Table of Contents

| LANGUAGE REFERENCE GUIDEccouotitieeeeeeeeeeee ettt esesteeseeteneseseeneseseesesesseneseenas 1
=N = S 1
| [TABLE OF CONTENTS ...ouiiioiiiitstiussssseseiesesetessessssssssesenesesesesasssssssssssssenenenstasssasssssssssenesesensasatassssssssnsnens 3
[TNTRODUCTION ooooooooooooeoooooooooeooooooeooeoeeeeeeeeseeneemseeneeneeeneeneeeneeneeeneeneeneeneeneeeneeneeeneeneeeseeneeneeeeeneeeneeneces 1]
[DOCUMENT CONVENTIONSoooooooooocoooocooooooooeooeoeoeeeeeeseeeeseeereeeeseeeseeenseeeseeeeseeeeeeeseeeeseeeeeeeeeeeseeeeees 1]
| LANGUAGE CONGCEPTS.......ovotiteeeeeeeeeeeeeteee ettt eteeseteteessnsteasesstesssnssensasssessssssensasssenssssseasssesenses il|

NN = N RS = R T =< I 1
IMETHOD AND PROPERTIES..........cciiuttttiieeiiiiiutteettesetasissesesssssasasssssessssesassssssesssessmsssssssssssssmmsssssssessssmmsrsseees 2
| JCO0E BOOY STUCIUINEeeeeeeeeeeeeeeeeeeeeeserereesesereeseseeneseseenesnseeneseseenesnseeneseseceeseencneac 2
NS e[S Y L= PP 25|
OIS S YL 28
JUSING EXPRESSIONSc.covveveereetiereteteeseseteeseteteeseseteseseseeseseseseseseesssesesesessasssesessseseessseseesssessosesereessseneas 35
EXPIESSIONS ... 35
YT = 37
SyNtaX Of & Variable NAME.........c.oieiiiiiiici ettt steesbeesbeeereeneenneereeereenns 37
Y RS e o e T, 40
NERE S XN A T e < YT T 42
[COMMANDS. ...ttt ettt et tese et eensseteasetsseasessseseesssensassteseasssenesesesessssenssseseneseseneas 52
[= 53
OO S = 54
CREATE ...ttt ettt et e st e e et e saeteastaesaeseanesssneseanesssnessasessssessanessasesennessssessasessssesesnesssnes 57
DIELIE e) oo 62
DO COMMAND = INTRODUCTIONuvveeeiiurereeeisreeesesseeesiseresasssesesssssesssssssesasssesesssssesssssssesssssesessssssesssssesens 64
DION O 1= A e o a0 = = AT T T T T T TR T T T — 69
PO Command - ArQUIMBNEIESS...........cviiiiiiiiiiecete ettt nne 69
DO 1= s O 1o Te T T — 70
L .ttt ettt et eeeeeree——————eetaaaa——————eeetaaa_————teaeteaa—be—ttaaeeesabbeteeetaeeeaannrberereeeeesannes 73
EVENT ... 75|
(O = T 7/
10 1O TN 81
AN 83
RN 84
ettt ettt e ett e ettt etteeatteateeaatteaeeeanteeaneeeaatseaneeeaneseaneeeabeseaneeesntteaneeesnteeaneeesnteeaneran 86
[T NTO R =T 88
VO] =T 90|
S PRSP 92
oo 95
NS R T —— 98
N EW 100
O = N 102
R = AV = 105
OIS 107
R 110
SO 113
O 118
T N K T 121

VRTTE ... oo oo oooooomseeseeeseeeseeeseeeseeeseeeseeeseeeneeeneeeseeeneeeseeeneeeneeeseeeneeeseeereeeeeeseeeeeeeeeneeeneeeneeereeeeeereeereees 125
XECUTE ... oo eeoeemeemseenseesseenseesseesseeaseeeseeeaeeeaeeeseeeaeeeeeeeeeeeseeeseeeseeaseeereeeaeeeseeeseeereeeaeeereeeneeereeereeeneeeeees 128
AN 130
[BPECTAL VARIABLES. ..o sooeeseoeeoseosesseesoseeseeeeeeseeereneeens 132]
CALLER oo 133
-E+CALLFRAME .. 134
BCHILDONT oo 135
B CHTLDREN ... oo oo oo oooeeereeeneeeneeeneeeneeeneeeneeeseeeneeeneeeneeeneeeneeeneeeneeeneeeneeeneeeneeeneeeseeeneeeneeereeeneeeneeereees 136
BCLASS oo 137|
[TEDEVTCE ovvvoooovcoooooeoooeeeeoeeeeseeeeesseeeeeesseeeesseereeesseeeesseeeeeesseeeesseeeeesseeeeesseeeesseeeeeseeeeesseeeeeeeseeeeseeee 139
DOMATN oo 140
ECODE. i, 141
BENVIRONMENT ..o 143
BESTACK ..o ooooooosereeeseesseeeneeeneeeseeeseeeneeeneeeneeeseeeneeneeeneeeneeeseeeneeeseeereeeneeeseeeneeereeeneeereeeneeereeereeereeeeees 144
BETRAP ..o 145
[TBHOROLOG -.ooovooooeeoomeeseooeeeseoeeeeseseeereoeeeeseeeeereeeeeseeeeereeeeereeeeesseeeeesseeeeerseeeeeereeeeeeseeeeeeeseeerseeeees 146
_%INTERFACE .. 147
TO o —_——_—_ 148
BIOB oo 149
DK Y £t 150]
BLAST CHILDID ..o 151
EXAMPLES SLIBRARY oo, 152
BLOCALOBIECTS. oo 153
TEMAXNUM o 154
BMEMORY OBJECTS .o 155
BIVIAX STR ..o ooooooeeereeeseeeseeeneeeneeeneeeneeeneeeneeeneeeseeneeneeeneeeneeneeneeeneerneenneeneenneenseenneereeneeereeeneeereeeeees 156
IIVIESSAGE - oovoov oo oo oo somoeeoeesseesseesseesoeesseesoeesseesseesseesseesseenseesseesssesieesseeseesseesseesiees 157|
TBMINNUM .o esoeeeeeeeeeeeeeeeeseeeeeseeeeeeeeeeeeeeeeeeeseeeeeseeeeeeeeeeeeeeeeeeeeeeeeeesseeereeeeneees 153
PARAMETERS. ..o 159
'PPARAM ETERLIST cooooo o, 160
BPEERS. ..o oo 161
EBPOTINTER ... o0 voereeereeeseeeseeeneeeseeeneeeseeeneeeneeeneeeseeeneeeseeeneeeneeeneeeneeeseeeseeeneeeseeeneeereeeseeeneeeneeeneeereeereeereees 162
POOL v 163
PRINCIPAL oo 164
PRIVILEGED ..ooooooooooooooooooooooo 165
] 166
= = N = 167
B RETURN 168
RO T OBJIEC TS ..o oo oo iosioesooesooessomsseessemsseeseeseeseeseeseesseesseeseeseesseeseeseeseesseesseesiees 169
ELF 170
HAREDOBJECTS ..o 171
ACK oo ——— 172
BSTORAGE. ..o 173
BSUPER ..o ooosoooooosooooooosoooooooooooossooseeoseeseeeseeeeeeeeeeeeeeeeeeseeeeeeseeeeeeeeeeeeeeeeeeeeeeeeeeereeereeeeeereees 174
e L 175|
NVSTEM oo 176
TEST oo 177
X oo 180
Y 181
57V TRDATAooooooooeemreeereeeneeeneeeneeeneeeneeeneeeneeeneeeneeeneeeneeeneeeneeeneeeneeereeeneeeseeeneeeneeeseeeneeeneeereeeneeereeereees 182
[EUN CT TONS oo seeseeeseeeeeeeeeseeereeeneeereeeneeeneeeneeeneeeneeereeeneeeneeeneeeneeereeeneeeeees 183
AT oo 184
BASNVECTOR ..o 187
TP ASSOCTATE ..o soeeeeeemeeeeeeeeeseeeeeseseeeseeeereeeeeseeeeeseeeseeeeeeeereeeerseeeeeseeeseeereeeeeneree 189

BCALLBACK .oooooooooooooosoooososooossesoossess oo e es e eeee e eeee e 190
BCHAR ..o 192
BCLASSOID ..o ee s e s eeee s s e ree e 194
[TBCOPY wooovvooooocooooeeeooeeersseeeesseeeeeseeeeersseeerseeeeereeeeereeeeeeeeeeeerseeeeeeeeeeereeeeerseeeereeeeeeseeeeeeeeeeeereeeees 195
%DATA ... 196
DELEGATE .oovvooooovoooooveoooeerssseeeesseeeerseseeesseseeeesseeeeersseeeersseeeeesseeeerseeeeeseeeeersneeeeseeeeereeeeereeeeerneees 199
DK I ST .o vooooeeeeooeessoeeeseeeeeeeeseeee s eeeeeeereeeeeeee e eeeee e e e e e reeee e e e eee e 200
BEX T CALLBACK ..o oeeeseeeeseeeeeesseeee s eeee s eeee e eeee e eeeeeeeee e ereeeaeeeereeee 202
DED TIRAC T -...vvvoooovvooooeveeeoeeeseeeeeesseeeeesseeeeseeeeeseeeeeeseeeeeseseeeessseeeeesseeeeseeeereemeeeeeseeeeeeseereesseeeereeees 204
[TBFTIND .o oovcooooooooooeeeooeee e soeeeeseeeeeeseeeeeeseeeeesseeeeeseeeeeesseeeeeeseeeeeeseeeeeseeeeesseeeeeeseeeeereeeeeeeseeeeeeseseeeeseeee 209
_EFNU IVIBER ... covrreeeoveersseeeereseeeerseeeeerseeeeeesseeeerseeeeersseeeeseeeeerseeeeerseeeeeeseeeeeereeeeereeeeereeeeeereeeerereees 211
FIREECD ».vv.coovvvoooeerseooeeesssooeesssooeeeseeoeeesseoeeesssseeeeseeeeeerseoeeeesseoeeeseeeeeereeeeereseeeeereseeereeeeeeeeoeeerssoeereoeees 215
ST OO OO 216

D GE T ENT RY REF ... oo oooooooooooeooeoeoeooeeeeeeeee s eeeee e ees e e eeee e eeee ettt eeee e eeee s eeeereeeee 218
BTN O..... oo ovvoeooeeeseeeemseeeeesseeeessseeeeesseeeeesseeeeseseeeereseeeeeseseeeereseeeeemseeeeemeeeeeemeeeeeereeeeeeeeeereemseeeereeeeees 219
SIS 221
%gusn Y oo e eee e eeee oo eeee e e e eeee e eee e eeee e eeeee e 222
LENGTH oo oooeeeeseeeeeseeeeseeeeessseeeesseeeeereseeeereeeeeesseeeeeseeeerseeeeesseeeeeseeeeeereeeeereeeeerseeees 225
BLTBRARY ..o oooooooooooooeoooooeeseoseeseeooeeseeeeeeseeeee oo ee e e s e e eeee e ee e eee e e e 228
L OOK U, 229
INAIVIE ... ooooovoeooooeooeoooeooeeeeeeeeeeeeesseeeeessseeeeseeeeeseseeeeesseeeeseseeeeesseeeeesseeeeeeeeeeeseeeeeeeeeeeeeeereemeeeeereeee 231
[TONORMALTZE ovvooooovocooooocooooveoooeeeeeeeeeessseeeesseeeeessseeeesseeeeessseeeeeseeeesseeeeesseeeeesseeeersneeeesseeeeeessreeeseeees 233
TDPTR -...oooooooooooeeesseoeeessoeeeesseeeeerseeeeeeseeeeeesseereerseeeeeeeseeeerseeeeereeeeeerseeeeeeeeeeeerseeeeereseeeereeeeereeeeeeree 235
RDER ...ovoooooovooooeeesooeeesooeeesseoeeesssooeeeseoeeerseseeerseeeerseeeeesseoeeerseeeerseeeeseseeerseeeereeeeeereeeeereseeereooees 236
OO v ovreeeeeeeeeeeeoeeeeseoeeeeeeeeeeeeseree e eeee e reeeee oo e e e e e e e e e e e 239
T =o =S 240
PROTECTvvvoooovvocoooovoeeoeeeeeeeeeeeseeeeesseeeessseeeessseeeeeseeeeeseseeeesseeeesseeeeeeeereeseeeeeeeeeeeeseereesseeeereeees 244
[TBPTIROID ..oooooovooooooooeoooeesoeeeseeeseeeeeseeeeeseeeeeseeeeseseeeseeeerseeeeseeeeeeeeesseeeeseeeeeeeeeeeeeeeeeeeeeeeeeseeeereeeeeeee 245
EPTRSTR ... 246
QLENG TH oovvvoooovcoooooooeosoereoeeeeseeeeesseeeeerseneeerseeeeesseeeerseeeereeeeeerseeeeerseeeerseeeeesseeeeessneeeerseeeeeseeeeeres 247
OSUBSCRIPTovoooooeroeooseseeeoseeseooeeeeseeeeseseeeee e eee e es e eee e ee e eee e ee e eeee e 248
BOQUERY oo 249
BOUOTEooooooooeeesoeeersseeeeeeseeeeersseeeerssseeeessseeeersseeeresseeeessseeeersseeeeensseeeeesseeeensseeeersseeeeessereersseeeereseees 252
[TORANDOM ..o eooeeesseeeeeeeeeeeesseeeeeseeeeesseeeeeesseeeeeseeeeeseseeeesseeeeeseeeeesseeeeessneeeesseeeeesseeesseeees 253
REVERSEcooorreooreresoreesssereersseeeeesseeeeesseeeeersseeeereseeeersseeeerseseeeerseeeereeeeeereeeereeeereereereeeereeees 254
ELECT wvovooovvooooereoooeereooeereooeeesseoeeeesseeeeeeseeerseeeersseeeeereeeeerseeeeerssoeeerseeeeenseeeeereeeeeeseererneereerereees 256
DT A CK oo ooeeoeoeeeesoeeesseeeeeeeereeseseeeee e eeeeeeeeeeeereee e reee e eee e eeee e reeeeeeeeee e reeeee e eereereeeereeee 259
DT EX T o 261
T RANSLATE ... oovvvcooovvoeooooooooooeeeeeeeeeseeeeesseeeessseeeeesseeeeesseeeessseeeeesseeeeseeereeseeeeseeeeeeseereesseeeeereeee 263
S o 266
VALK ..o eoeeeeeeeseoeeesseeeeeeeeeeesseeeeeseeeeeemeeeeeseeeeeseeeeeeseeeeeeeeeeeaeeeereeeeeeeeereeeeeeeerree 267
WATCHDETECT coovvvvoooovocoooooveoooeeessoeeeesseeeeessseeeerssseeeesseeeesseeeersseeeeesseeeeeeseeeeessseeeersseeeeseeeeerseeeeene 269

B Z EN G T ..o oeoeoooeseeeoseeseoeeeseoeeeseseeee e e s e eeee e eeeeeeee e e ee e e e 271
A= o =S 273
[IOPERATORS oo ooomesooseesooeeeseeeeeemeeeeeeeeeeem e eeeeer e eee e 275
[JARITHMETIC OPERATORS. ...ttt en e 276
T o N D T — 277
SR In = D T 278
Binary EXPONENTIATION (™) oooooooooooeesoorerseeeeereeeeeseeeeemeeeeeeeeeeeesseeeeeeeeeeeereeeeeeereeeeeeees 278
Binary INTEGER DIVIDE (\) oo ssseeee e eessseeeesseeeessseeeeesereenens 280
ONGEY MINUS (=)-vvooooovoeeoeoeooeeoeseeeeeseeeeeeseeeeessseeessseeeeesseeeeesaseeeessseeeeesseeeeeeseeeessseeeeeeereereeeeersee 282
BINAIY MODULO (7) ..vvoooovvvooooerrooeeersseeeesssoeeerseeeeesseeeeesseeeerseeeeerseeeersseeeeseeeerseeeeereeeeeseeeeeesen 284
BINATY MULTIPLY () oooovooooooocoosoeoosooeesseoeeesseseeesseeeeesseeeeeseeeeessseeeeeseeeeesseeeeeseeeeesseeeerseeeeeeer 286
ONETY PLUS (F Yovvvooooovoeooseerssoeeersseereessoeeessseeeeessseeeesseeeeesseeeeesseeeerseeeeesseeeesseeeereeeeereeeeresmeeernoe 287
BiNAry SUBTRACT (-).ooooooooooomoroooomeesssoseesoooseseeeeesesseesseeeeee e eeesseeeeese e eeeeseeereeee 288

| IRELATIONAL OPERATORScveveeviveieetrsteeeesrsteseessssesessessessessssessesessessessesessensssessensesessensssessensesessensssesseneans 289
Binary CONTAINS ([)ittt 290
A= 292

[IBINAIY FOLLOWS (])ooooovroooorseorrmeoeereeeeeseeeeseeeeeseseerseeeerseeeereeeeneeeeseeeeeseeeereeeereeeerseeeeseeeeeseeeereeeeees 294
Ei NANY LESSTHAN (<)oo 296
INArY GREATER THAN (3) .uoiivetiiiictiisteteeisete ettt ettt snetenasaese s sneranene 298
Binary PATTERN MATCH (?)ovvcviiiietiieete ettt ensnesessenesesssesensesesesssseses 300
Binary SORTSAFTER (1]).rouiiiotiiiitiiiiitiiiiteiie ettt tese s ssesesesessssesesssssessssssesssssesssssseses 303

| LOGICAL OPERATORS.......c.cvveveereteteereeeteeeeteteessseteeresssessseseesesesensssssessesssensssssessasssenssssseseesssensesesesesseseneas 306
ST AN D N 307
BINAry INCLUSIVE OR (1).oovuoovoovoooeoeeeseeseeeseeeseeeseeeseeeseeeseeeseeeseeeseeeeeeeeeseeeeeeeeeseeeeeeeeeeeeeeeeeees 309
T L G 311

| ISTRING OPERATOR ..ottt ettt et eee et eaeeneseseeseseseesesesenssensaseseseasesensasesesenseseneas 313

| T T e e NSy N = = — 314

| INDIRECTION (@) OPERATOR........vveveeeererevereeeeeeeeeteeeesessesesesssssssesesesesessesesssssssssssesessssnsssssssesssesesesesenees 315
e T s LA e e T 316
NE YTt = e e T 316
SY T A Tl T T 31/
AT T (o T 318
C1ass Element INAir@CHON ..ottt s e e e eseeereeseenseesseessesseesseesseesnes 318

-F’arameter [T = o e T 319

TTNDER wooooooooooooooeeeemeeooeeeeeeesreeeeeeeeeeeereeeeeeeeeeereeeeeeeeeeeeesmeeeeeeeeeeereeeeeeeeeeeeeermeeeeeeeeeeeeremmeeeeeeeeeeerreee 320]

Introduction

This guide contains some language concepts for the EsiObjects programming system. It

contains the following:

» Language Concepts section that covers all functionality supported within a method
or property code body.

» All EsSiObjects commands, special variables, functions and operators.

Document Conventions

Esi Objects documentation uses the following typographical conventions:

For more information on
this subject please refer to
the BREAK Command
section of this guide.

Underlined text is used to highlight areference to
another section of this guide or another guide.

Property In text, italicized words indicate defined terms that
are usually used for thefirst time. Words are also
italicized for emphasis.

CREATE Words in bold and capitalized are EsiObjects

commands or keywords.

Set T%lest =l %Pat . Nane

Thisfont is used for code examples.

L anguage Concepts 1

Language Concepts

The EsiObjects language is based upon the ANSI standard MUMPS (M) language. The
M language is a powerful string handling language that, by definition, implements a
hierarchical, multi-dimensional array construct whose instances may exist persistently or
non-persistently.

EsiObjects uses the M language and embedded array specification as an enabling
technology. The object model implemented using M code and array structures is based on
the Smalltalk object model. This model is class based. Classes contain the definitional
information needed to instantiate an object. Classes contain:

* |nterfacesthat contain class services
* Variable definitions

Interfaces and Services

Interfaces provide away of partitioning a class' s services. Interfaces offer the
programmer away to logically separate the services of a class. Each interface can
potentially contain up to four service types. They are:

* Relationships
* Events

* Methods

* Properties

A relationship is aspecial type of service that is covered in detail in the Programmer’s
Reference Guide. Relationships are created using existing classes and code;
consequently, they are not of interest here.

The EsiObjects implementation added the concept of eventsto the M language. Itisa
mechanism that permits the programmer to broadcast an event to objects that have taken
out awatch on that event. The mechanism uses another EsiObjects feature added to the M
language, the callback. The callback mechanism uses methods to hold the code to be
executed.

Methods are code bodies that give an object its behavior. Methods are stored at the class
level. Every instance of a class has access to a method that exists within an interface of
the class. Method code bodies contain lines of code just like M routines. However,
method code bodies contain other features not found in a normal M routine such as
compiler directives and input specifications.

L anguage Concepts 2

Properties within EsiObjects are generally used to expose the state of an object. Each
EsiObjects property consists of a number of specialized methods called accessors.
Accessors are:

e Assign

* Create

« Kill

* Value

+ $Data

* $Get

« $Normalize
e $Order

e $Query

« $vdid

Each accessor represents a code body that is mapped to an EsiObjects language element.
For example, if code exists for the Kill accessor, it will be invoked whenever the property
is used within an object message of the Kill argument.

The method and property accessor support the same structure and features.

Method and Properties
Code Body Structure

A method is callable code body associated with a class. This code body can be invoked
on any object instantiated from that class. A messageis arequest that can be sent to an
object that may invoke a method to be performed.

An accessor isaspecial purpose method that is attached to a property and controls access
to the property. An accessor is an action that is associated with a property.

[lustrated below is the general structure of a method code body.

A method may begin with an Options Specification Block, which defines the options
that define the method. That is, what type it is, whether it isinheritable, what valuesis
passes back, etc. If the Options block is defined, it must precede the Input Specification.

The Input Specification Block, if present, declares parameters and their internal
mappings.
The combination of the Options Specification Block and the Input Specification Block

form afull specification of the method or property. Combined, these two blocks can be
used to generate a textual specification of the method or property.

L anguage Concepts 3

The remainder of the method body consists of the L ogic Block consisting of one or more
lines of EsiObjects code and compiler directives.

Options Specification Block

Input Specification Block

Logic Block

Code Body Components

All EsiObjects properties have accessor methods. Note that these are standard methods,
and they share the method structure described in this section.

Options Specification Block

An EsiObjects Options Specification lets you define a specification of the method or
property accessor code body such that:

1. A tota textua representation can be produced outside of the EsiObjects environment
2. And, strong typing can be enforced.

It must be placed at the beginning of the code body and before the Input Specification if
it exists. Specifying options actually has an affect on the compiler. Consequently care
must be taken to insure accuracy. The options are also used by various code generation
add-ons (e.g. The Java Proxies builder).

The following is the syntax for an options specification:

optionspec ::={ws} OPTIONS:{ws}({ws} L optionitem) {comment text} eol

where;

L anguage Concepts 4

ws is optional white space
can be one of the following:
SP
TAB
Eol
; {comment text} eol
OPTIONS is the Options: which is not case sensitive

optionitem is alist of option items enclosed in
parentheses (or curly brackets) and separated
by commas

comment text are optional comments (comments can be
preceded by a semicolon for clarity, but it is
not required)

The following is an example of an Option Specification that contains two option items
and a comment:

Opti ons: (Type=Base$Set, Method) ; Return type is Base$Set and it's a Method

White space in an Options Specification can contain tab characters, spaces, end-of-line
characters, and comment text (preceded by a semicolon and terminated by an end-of-line
character). White space allows option specifications to extend beyond asingle line. For
example:

Opt i ons: (
Type=Base$Set, ; Return type is Base$Set
Met hod ; This code body is a Method

)

In the previous example, each option item is specified on a separate line and its purpose
is documented by a comment. Thisis the preferred method of coding option
specifications because it is easier to read and understand.

The following table outlines the various option items currently available for EsiObjects.

Option Items Description

Abstract Abstract indicates that the service is a placeholder and
must be implemented by a subclass.

AnyKeyword AnyKeyword indicates the method or property will accept
any keyword parameter as being valid.

Class Class flags the code body as being a part of the Factory
interface. It isbasically aclass level method.

Constant Constant indicates that the service returns a constant
value. The parser may resolve this constant during the
compile.

L anguage Concepts 5

Experimental Flags the method or properties as being Experimental.

Id = Identifier Associates an identifier to this service. Thisidentifier may
by presented to the user during errors or debugging.

Inheritable I nheritable means the method can be seen by subclasses.

Method or Identifies the type of the code body. Only those listed are

Property_Set or

Property Kill or
Property_Get or
Property Createor
Property_DataFn or
Property_GetFn or
Property OrderFn or
Property_QueryFn or
Property NormalizeFn or

Property ValidateFn

valid and must be spelled properly.

Name = Full Name

Name of the code body (Method or Property).

Platform = Platform
Expected

Where Platform Expected can be DSM, MSM, Cache,
GT.M or All. It is strictly a documentation flag at this
point.

Private or Public

Private identifies the method as private to the class. It is
not a part of the classes protocol.

Public means the method is exposed as a part of the classes
protocol.

Privileged Privileged means the method has privileges to execute
those language elements that required privileges such as
$OIDPTR and $PTROID.

Static This keyword indicates that the serviceis called in astatic

manner (i.e. without an instance). When thisoption is
present references to instance variablesisillegal. A Parser
code PARSE_STATIC_NOINVAR will result.

Throws = Exception

Identifies the service as throwing the noted exception.
Each exception that is thrown by the service should appear

L anguage Concepts 6

in the options block. The exception must be a subclass of
the class ESI $Exception. This option is available from
V4.1 and higher.

Type = Return Type or
Void

Defines the return type of the method or property if itis
applicable. If you use the Type= format, the compiler will
insure that the value returned from the method is of the
type specified. For example:

Opt i ons: (Type=HI S$Pat i ent)
will insure that the return value is an object of the
HIS$Patient class.

Alternatively, you may specify Void, there will be no
return type returned.

UseslO Usesl O flags the method or property body as using direct
IO devicesthat are specific to the M implementation.
Virtual Virtual flags the method or property as being a part of a

virtual class. It cannot access instance variables since
virtual objects do not have state.

L anguage Concepts 7

Input Specification Block

An EsiObjects Input Specification must be placed between the Options Specification
Block, if it exists, and the Logic Block. It defines the method's input parameters and their
internal mappings.

The following is the syntax for an Input Specification:

inputspec ::={ws} INPUT:{ws}({ws} L inputitem) {comment text} eol

where:
ws is optional white space
can be one of the following:
SP
TAB
Eol
; {comment text} eol
INPUT is the Input: keyword, which is not case
sensitive
inputitem is alist of input items enclosed in
parentheses
comment text are optional comments (comments can be

preceded by a semicolon for clarity, but it is
not required)

The following is the syntax of an input item:

inputitem ::= {{paramopt} keyword:} {pers} {ws}
{paramopt}glvn pers
{paramopt}glvn=expr

An input item can be null, but can contain up to three parts. The first argument specifiesa
keyword if the parameter can be passed by keyword. The second argument specifies a
variable mapping and possibly an expression to calculate the default value. Either of
these arguments can specify a parameter option. The third argument of an input item
consists of ignored white space and comment lines.

The following is an example of an Input Specification that contains two input items and a
comment:

| nput : (P%Di r, P% ndex) ; direction and index nane

L anguage Concepts 8

White space in an Input Specification can contain tab characters, spaces, end-of-line
characters, and comment text (preceded by a semicolon and terminated by an end-of-line
character). White space allows the Input Specification to extend beyond a single line, for
example:

| nput : (
Po%-i el dl d, ; Prevalidated field nunber (ID)
P%W/al ue ; Value to be validated.

)

In the previous example, each variable is specified on a separate line and its purposeis
documented by a comment. Thisisthe preferred method of coding input specifications
becauseit iseasier to read and understand.

The following sections describe the valid parameter options (paramopt) associated with
the keyword (keyword:).

Parameter Options

Required or Optional

The Required parameter option is used to force the system to generate an error if avalue
isnot passed in. If it is not specified or if Optional is specified, then the value need not
be passed in and an error will not be generated. The default is Optional.

The following example contains an Input Specification with two mappings.

I nput : ((Requi red) Fi el d: P%-i el d, Val ue: P®W/al ue="")

In the previous example, the first parameter is Required, isidentified by the keyword
Field, and maps into the symbol PY%Field. The second parameter is Optional, is
identified by the keyword Value, and it maps into the symbol P%Vaue. If the second
parameter is not specified, it receives the default value of NULL ("").

In, Out or InOut

The In, Out and InOut parameter options give you control over the destination of
parameter values.

If neither option is specified (or the In option only), the compiler will default to the In
option. This means a value may only be passed into the specified variable. It will not be
passed back to the caller.

If the Out parameter option is specified by itself, this means that a value cannot be passed
into the specified variable. The variable and value associated with the Out option will be
passed back through the calling contexts and be made available to those contexts. This
mechanism is classically used to return special conditions that occurred such as an error
that terminated processing. It is areplacement for the traditional M call-by-reference
syntax that viol ates encapsul ation.

L anguage Concepts 9

If the In and Out parameters are specified ssmultaneously (In, Out or InOut), this means
that a value can be passed in and bound to the specified variable. Additionally, it will be
passed back to the calling contexts.

The method that uses the In, Out and InOut parameters must declare them.
For example:

| nput : (
(1 n) P¥%Nane,
(InCut) P¥Err St at
(Cut) PY%Err Msg

)

Thefirst parameter declares the parameter variable P¥%oName as an In only parameter.
This means that a value may only be passed into the current context. It cannot be passed
out.

The second parameter is declared as both In or Out (could have been specified as In,Out).
This means avalue may be passed in and it will be passed back by the system once the
current execution is popped from the stack.

The third parameter is declared as strictly an Out parameter. This means it cannot accept
avalue passed in and can only pass avalue back to its caller.

On the caller’ s side, the parameters must specify how the values are being passed. This
needs to match the way the Input Specification is declared. An example of the calling
syntax for the Input Specification above follows:

Do T%ati ent. Val i date(“Doe, John D’,[InQut] T%rr Stat, [Qut] TYEr r MsQ) .

EsiObjects has replaced the pass-by-value and pass-by-reference mechanism of standard
MUMPS with the In/Out mechanism because it does not break encapsulation. It uses the
messaging mechanism to pass back values to a calling context in a safe way. The call-by-
reference mechanism of standard MUMPS breaks encapsulation by |etting one object
directly access the state of another object.

Alias

The Alias parameter option lets you use different keywords when mapping parameter
values. This option is useful when two or more callers use different keywords.

L anguage Concepts 10

The following example illustrates how atypical Input Specification would look using the
Alias option.

| nput : (
Pat i ent Nane: P%Pat Nam
(Al'i as) Nane: P%Pat Nam
Dat eOX Bi rt h: PYOOB

)

Parameters can be passed in by keyword or by the traditional M approach - by position.
Passing by keyword lets the caller to specify the parametersin any order as long asthe
keyword is specified. The following illustrates how passing values in by keyword would
work when two different objects call the Lookup method.

Object 1.

Do T%at Qbj . Lookup(Dat e Bi rt h: " 10- Jan- 42", Pati ent Nane: " Doe, John D")
Object 2:

Do T% at Qbj . Lookup(Nane: "Doe, John D', DateO'Birth:”10-Jan-42",)

Notice that Object 1 uses the PatientName keyword and the order is different from the
Input Specification. Because keywords are used, the order does not matter.

Object 2 passes the patient’ s name in using the Name keyword specified by the Alias
parameter option.

Use of the Alias parameter option in the Input Specification does not take up a position.
That is, an Object 3 could call the Lookup method using positional parameters and the
values would map properly. For example:

Do T%at Qoj . Lookup(” Doe, John D', ”10-Jan-42",)
Type=

The Type parameter option lets you restrict a parameter value to an OID of an object of a
particular Library$Class. For example:

| nput : (
(Type=HI S$Pat i ent) Pat i ent Name: P%at Nam
(Al'i as) Nane: P%at Nam
(Type=Base$Ti meSt anp) Dat ef Bi rt h: PYOOB

)

By specifying the Type=HIS$Patient on the first parameter, the compiler will generate
the proper runtime code to insure that the value being passed in is an instance OID of the
Patient classin the HIS library. Additionaly, the Type=Base$TimeStamp will force the

L anguage Concepts 11

runtime module to make sure the valuesis an OID of the TimeStamp Call in the Base
library.

The Type parameter option helps eliminate errors due to bad parameter passing.
System

The System keyword flags the parameter a being system generated. It isrequired and
should never be deleted. Additionally, the System keyword should be attached to those
system-generated parameters. Specifically, the first parameter on the following property
accessors should be flagged as System.

* Assign

o $Get

e Create

e $Order

* $Normalize
+ $vdid

Parameter Variable Assignment

The mapping of input parameters to their associated symbols can involve complex
interactions.

Thelist of input parameters can consist of positional parameters, keyword parameters,
and void parameters. All the parameters in an actual method parameter list are assumed
to be positional until the first keyword parameter is encountered. After the first keyword
is encountered, all the parameters are assumed to be keyword.

Thefollowing isalist of theinput item keyword syntaxes:

keyword: A keyword is declared, but no
mapping is associated with it. This is
known as a void mapping.

keyword:variable A keyword is mapped into a
variable.
keyword:var=value A keyword maps into a variable. A

certain value is used as the default if
no value is passed as a parameter.

variable A positional parameter maps into the
specified variable.
variable... The variable name is used as the

root of an array. All remaining
parameters appear as array nodes,
and the base of the array contains
the address of the highest-
numbered parameter to receive a
value.

L anguage Concepts 12

variable=value A positional parameter maps into the
specified variable. A default value is
specified in case the parameter is
not passed.

Example 1: Simple Parameter Passing

This example shows the simplest form of positional parameter passing. Three variables
PY%Name, P%Tag, and PY%ParamList are declared in the Input Specification. The three
values (1, 2, and 3) are passed positionally in the actual method parameter list. Therefore,
inside the method body P%Nameis equal to 1, P%Tag is equal to 2, and P%ParamList is
equal to 3.

L anguage Concepts 13

Input Specification

| nput : (P¥Nane, PY%lag, P%Par anli st)

Method Call

DO Obj ect. Met hod(1, 2, 3)

Internal Mappings

PYNanme=1
PY%lag=2
Po%ar anli st =3

Example 2: Array Parameter Passing

This example illustrates the use of an array parameter in the Input Specification. Three
periods are used to specify that al remaining parameters should be included as array
nodes of PY%ParamL.ist.

The first two parameters are passed positionally into the variables P%Name and P%T ag.
The third input item in the input specification is the array PY%ParamList. Because there
are atotal of 6 parameters, parameters 3 through 6 appear as array nodes P%ParamL.ist(1)
through P%ParamL.ist(4), and the root node C contains the total number of array nodes.

Input Specification

| nput : (PYNane, PY¥ag, P%Par anlist...)

Method Call

DO Ovj ect . Met hod(1, 2, 3, 4, 5, 6)

Internal Mappings

PYNanme=1

P%lag=2

P%Par anii st =4 PY%Par anLi st (1) =3
PY%Par anLi st (2) =4
PY%Par arLi st (3) =5
PY%Par arrLi st (4) =6

L anguage Concepts 14

Example 3: Using Keywords on Parameters

In this example, the keyword WindowSize is declared as the sixth parameter, which isto
be mapped into the variable P%oHei ght. P¥%oParamList is declared as an array of all the
remaining parameters. Therefore, when the keyword WindowSize is specified, the
associated value appears in two places:

* Inthe array node P%ParamList(4) because it is the sixth parameter

* Inthevariable P%Height because it uses the keyword WindowSize

Input Specification

| nput : (PYNane, P¥%rag, P%Paraniist...,,, W ndowSi ze: P%-ei ght)

Method Call

DO (bj ect. Met hod(" Text ", W ndowSi ze: 12)

Internal Mappings

PYNanme="Text "
P%Par anli st =4
PY%ar anLi st (4) =12
P%-ei ght =12

Example 4: Using Keyword and Positional Parameters

In this example, the Input Specification declares void mappings for the keywords Key
and Type, and maps WindowSize into P%Height. These three keywords are declared as
the fourth through sixth parameters, respectively. Also, the keyword W maps to the array
P%ParamList, which is an array containing all parameters after the third. The method
actual list passes values into the keywords Key, Type, and WindowSize. They map
positionally into the array PY%ParamList and WindowSize maps explicitly into the
variable P%Height.

Input Specification

| nput : (PYNane, PY%rag, W P%ar anLi st . .., Key:, Type: , W ndowSi ze: P%ei ght)
Method Call

DO bj ect. Met hod(Key: 1, Type: 10, W ndowSi ze: 15)

Internal Mappings

PY%ar anLi st =4 PY%Par amLi st (2) =1
P%Par anLi st (3) =10
P%Par anLi st (4) =15

PY%-ei ght =15

L anguage Concepts 15

Example 5: Defaulting Parameter Values

In this example, the Input Specification maps keyword Key into variable P%SVal with a
default value of Text and maps keyword Type into the variable P¥%Height with a default
value of 10. Key is passed the string EsiObjects, which is passed to P%SVal. P¥%Height
gets the default value 10 because a value was not passed in by the method call.

Input Specification
| nput : (Key: P¥%8Val =" Text ", Type: P%Hei ght =10)
Method Call

DO Obj ect. Met hod(Key: " Esi Obj ects")

Internal Mappings

PY%Hei ght =10
P¥SVal =" Esi Obj ect s"

Example 6: Positional and Keyword Parameters

In this example, two positiona parameters P%Name and P%Tag are declared, and
P%T ag defaults to P%Name. A single value (10) is passed into the first parameter and it
maps into P%oName. P%Tag is also 10 by default because it refers to P%Name.

Input Specification

| nput : (P¥Nane, PYdag=P%Nane)

Method Call

DO bj ect . Met hod(10)

Internal Mappings

PYName=10
P%lag=10

Example 7: Unspecified Parameters

In this example, two positional parameters P%oName and P%Tag are declared and
P%Name defaultsto P%Tag. A single value (10) is passed into the first parameter and it
maps into P%oName. P%Tag is not defined.

Input Specification

I nput : (P¥Nane=P%lag, P%Tag)

Method Call

L anguage Concepts 16

DO Obj ect. Met hod(10)
Internal Mappings

PYName=10

Example 8: More Unspecified Parameters

In this example, two positional parameters P%Name and P%Tag are declared and
P%Name defaultsto P%Tag. A single value (10) is passed into the first parameter and it
maps into P%Name. Because avalue is passed into P%Name, its default is not used.
P%Tag is not defined.

Input Specification

| nput : (P¥Nane=P%lag, P%Tag)

Method Call

DO bj ect . Met hod(10)
Internal Mappings

P¥Name=10

Example 9: Positional and Keyword Errors

In this example, three positional parameters P%SVal, P%Name, and P%Tag are declared.
P%Name defaults to P%Tag. A single value (10) is passed into the first parameter, so it
maps into P%SVal. An error occurs in this example when an attempt is made to assign a
default value to P9%Name. Its default value is Po%Tag, but PY%Tag isundefined. Itisless
misleading if the Input Specification had declared P%Name as a Required parameter.

Input Specification
| nput : (P¥8Val , P¥Nane=P%lag, P¥dag)
Method Call

DO Obj ect . Met hod(10)

Internal Mappings

PYBVal =10
ERROR: PY%dag is undefi ned!
Example 10: Positional and Keyword Mapping

In this example, two keyword parameters Key and Type are specified. Key mapsinto
P%SVal, which defaults to P%Height and Type maps into P¥%Height. The value 10 is

L anguage Concepts 17

passed to Type, so P¥%Height becomes 10. P%SVal also gets this value because its
default is P%Height.

Input Specification

I nput :

(

(Requi r ed) Key: P¥%SVal =P%ei ght ,
Type: P¥8Val

)

Method Call

DO bj ect . Met hod(Type: 10)

Internal Mappings

PY%-ei ght =10
PYBVal =10

Logic Block
Four Types of Lines

The syntax described in this section defines the structure of aline of EsiObjects code
found in the Logic Block. The following is the syntax of aline:

line ::= Formalline Eol
Codeline
Directive
Blankline

The linesin an EsiObjects method fall into the following categories.

* Formal lines A formal line (formalline) begins with alabel, followed by aformal
parameter list (alist of local variable namesin parentheses), aline-start indicator
(space or tab), and the body of the line.

formalline ::= label formallist Is linebody

» Codelines A code line (codeline) optionally can begin with alabel that is
followed by aline-start indicator (a space or atab), and the body of a code line.

codeline = { label } Is{ li ... } linebody

» Thebody of acode line can begin optionally with level indicators, which indicate
the dot-indent level in an argumentless DO block. Leve indicators consist of
periods and any number of optional spaces. The total number of periods indicates
theline's actua level.

L anguage Concepts 18

* Preprocessor directives A preprocessor directive (directive) altersthe
compilation of the method. For more information about preprocessor directives,
see the Preprocessor Directives section of this guide.

» Blank lines These lines contain no text and are ignored.

The line body (linebody) consists of one or more commands, separated by one or more
spaces. The last command on the line never requires spaces after it. The following isthe
syntax of aline body:
linebody ::= commands {cs comment} Eol
Comment

The following is the syntax for acomment and command space:

comment ::= ;i {;} { commenttext }
cs::=SP...

A semicolon can occur in the command position, which indicates that the remainder of
the lineis a comment text. The compiler ignores comments. Comments preceded by two
contiguous semicolons are never stripped by the compiler and can be accessed with the
$TEXT function (subject to certain restrictions). For more information, see the
description of the STEXT function.

Command space cs consist of one or more spaces.

The commands (commands) on the line consist of one or more commands and their
arguments, separated by at least one space. The following is the syntax of a command:

commands ::= command {SP command ...}

As defined by the previous syntax, acommand consists of acommand and its argument,
or consists of an argumentless command followed by a single space. Therefore, there
must be at least two spaces between an argumentless command such as EL SE and the
next command on the line. However, if the last command on the line is argumentless (as
in the case of QUIT), it does not require any spaces before the end of the line.

Line Syntax Examples

The following example contains aformal line and four code lines.

GETI TEM' N, OBJECT) ; Return el enent N of OBJECT
| F $GET(OBJECT) ="" DO
. SET OBJECT=$SELF. Get Baseltem ; Create object
. DO OBJECT. LoadEl enent s
QUI T $GET(OBJECT. El enents(N))

Note the following about the previous example:

* Thefirst lineisaformal line, which contains a starting label, aformal parameter
list with two parameters, and acomment. The line-start indicator is a space.

* Thelast four lines begin with atab, followed immediately by the line body. Tabs
are stored internally as spaces.

L anguage Concepts 19

» Thethird and fourth lines have alevel indicator (a period), indicating that both
linesare at level 1.

The following example contains four code lines:

; Calculate return value and exit...
| F ' SDATA(T%Resul t) SET $RETURN=11 ; Descendant +val ue
ELSE SET $RETURN=T%Resul t ; Two spaces between ELSE and SET

QT

L anguage Concepts 20

Note the following about the previous example:

» Thefirst lineisacomment line (everything after the semicolon isignored).

* Thesecond line contains | F and SET commands with arguments and ends with a
comment.

* Thethird line begins with an argumentless command, EL SE, which is separated
by two spaces from the SET command.

» Thefina line has an argumentless command, QUI T, which does not require any
spaces before the end of the line.

Labels and Label Keywords - Introduction

Formal lines and code lines can have labels as shown by the following syntax:
codeline ::={label } Is { li ... } linebody

The following example shows aline containing a label, followed by aline-start indicator
and a comment:
DI SPLAY ; Display the entries in the object's el enent array.

A formal line begins with alabel, followed by aformal parameter list, aline start
indicator (space or tab), and the body of the line. The syntax is as follows:

formalline ::= label formallist Is linebody

A formal parameter list isalist of local variable names enclosed in parentheses.
Sometimes there are no local namesin the parameter list (for example, in the case of an
extrinsic variable). The syntax for aformal parameter list is asfollows:

formallist ::= ({L localname})

The following example shows a line containing a label and aformal parameter list,
followed by aline-start indicator and a comment.

GETI TEM' N, OBJECT) ; Return el enent N of OBJECT
Labels in EsiObjects
An EsiObjects |abel consists of alabel name, which optionally can be preceded by alist

of label keywords, enclosed in parentheses and separated by commas. Label use
declaration (keywords) is provided in EsiObjects to support:

» Cadlbacks
» Event processing
» Labd inheritance

If no label keywords are specified, the default keywords Local and Private are used. The
syntax of alabel in EsiObjectsis asfollows:

label ::= {(L labelkeyword)} labelname

L anguage Concepts 21

Label Keywords

Keyword Description

Local Local to this code body (not inherited).

Common Inheritable by implementations of this method found
at ancestor and descendant classes.

Private Cannot be seen from outside this method.

Public Can be found by the external lookup mechanism.

Another method for this object could define the label
as a callback entry point with the SEXTCALLBACK
function.

Handler Callbacks can be made to this label from outside the
context of any object when they come in with a
jacketed nonobject context. The $ASSOCIATE
function must be used to associate to an object
before instance variables can be accessed. Also,
you can use $SELF.

Open Label can be found and advertised to external
routines. It is not jacketed like handler methods. The
label can reveal some piece of functionality (for
example, generate a random legal file name), but
cannot associate to an object. This keyword is not
recommended for general use.

Label Inheritance

EsiObjects supports label inheritance, which isindicated by preceding the line label with
an asterisk (*). The following is an example of |abel inheritance:

DO *TEST

The previous example accesses the label TEST that is implemented within the same
method at the superclass. TEST must be a public label for thisto work.

Introduction to Preprocessor Directives

Preprocessor directives are used in EsiObjects to affect the compilation of a method. All
directives are positional and are in effect once the directive is compiled. See thetable
below for alist of the preprocessor directives that are supported by EsiObjects.

Directive Description

#define symbol Defines a symbol.

#undef symbol Kills a symbol.

#ifdef symbol Compiles the code lines that follow
the directive if the symbol is defined.

#ifndef symbol Compiles the code lines that follow
the directive if the symbol is not
defined.

#endif Ends the conditional block.

#m Compiles the block as standard M

code.

#endm

#ifver version

#ifnver version

#static

variable

#const name value

L anguage Concepts

Ends M compilation.

Will compile the code if the current
implementation version is greater
than or equal to the requested
version number. The requested
number is the full number such as
4.0.2.8.

Will compile the code if the current
implementation version is less than
the requested number. The
requested number is the full number
such as 4.0.2.8.

This directive has two meanings
dependent upon the type of variable.

For Instance and Class Variables:
If the specified variable is declared
as dynamically initialized, the #static
directive can be used in the code
body to prevent the check to see if it
is defined every time it is referenced.
When using this directive, the
variable must be looked up at least
once before the directive is in effect.
If it is not, referencing the variable
will result in an undefined error.

For Name Pool Variables: Name
Pools are objects that contain N%
arrays. They can be linked into
hierarchical structures so that
variable nodes in super objects will
be inherited. For performance
purposes, if the #static directive is
used on a Name Pool variable, the
inheritance check will not be made.

Directs the compiler to create a
variable CN%name=value. That is,
the value is bound to a CN%name
variable. This variable is then
available within the context of the
methods execution context.

22

The #ifdef and #endif directives are used to compile a section of code only if acompiler

symbol has been defined. Some directives are bounded, which means that the affect of
the directive ends when some form of the #end directive is encountered (for example,
#ifndef). Other directives affect the compilation of all lines that follow the directivein

the method (for example, #define).

The following directives are specific to the underlying M platform.

#ifdef directive
Hstatic directive

L anguage Concepts 23

e f#const directive

Example #ifdef directive

In the following example, the first line contains the #ifdef directive. The #ifdef directive
specifies that the lines that follow are compiled only if the symbol MSM was defined
using #define. The next two code lines contain the OPEN and USE commands and the
#endif directive. The #endif directive ends the section that is compiled conditionally.

#i f def VBM
OPEN S1: (ToFile:"W)
USE S1
#endi f
By default, EsiObjects supports the following symbols for the various MUMPS systems:
DSM Digital Standard MUMPS system.
MSM Micronetics Standard MUMPS system.
DTM DatalTree MUMPS system.
GTM Greystone Technology MUMPS system.
CACHE InterSystems Cache system.

The #static directive guarantees that a variable reference is static, instead of sparse. A
sparse variable reference runs slower because it must determine whether the variable
exists before returning its value, and inherit and/or calculate the value if it does not. A
static variable can be compiled down to a direct variable reference.

Example #static directive

The following examples illustrate the #static directive for Instance (1%) and Class (C%)
variables as well as Name Pool (N%) variables.

Instance and Class Variables

SET | %ei ght =100

In the previous example, assume the 1%Height variable has been declared to be
dynamically initialized. When the variable is accessed, it will be created and then set
equal to 100.

#static | %ei ght
Set T%I| %ei ght

In this example, the #static directive tells the compiler not too generate the typical
lookup code of adynamically initialized variable [%Height. The variable is expected to
be present.

The above behavior applies to Class variables as well.

L anguage Concepts 24

Name Pool Variables

#stati c NvNane
Set T¥X=N¥Nare

Name Pools are objects that contain N% arrays. These objects can be linked into
hierarchies. When linked, the sub objects inherit N% variables in the super objects.
Sometimesit is desirable for performance purposes to eliminate that search.

In the example above, the N%Name variable is declared static. The compiler will not
generate inheritance code for it. When reference, it must be defined or it will generate an
undefined error.

Example #const directive

The #const directive sets a constant value. This value is substituted throughout the
remainder of the method whenever the constant is encountered. Note that constant-type
symbols begin with the code CN when used within a method.

The following example illustrates the use of the #const directive to substitute the
uppercase alphabet.

#const Upper Case " ABCDEFGHI JKLMNOPQRSTUVWKYZ"
#const Lower Case "abcdef ghi j kl mopqgr st uvwyxz"

SET L%t ri ng=$TRANSLATE(L¥%St ri ng, CNA.ower Case, CN%Jpper Case)

Alternative coding using literals for the previous example has the following
disadvantages:

e Accessor variables could be used, but this runs slower because aliteral isfaster
than a variabl e access.

» Literas could be used instead of constant references, but this does not change run-
time performance, requires more typing, and is harder to read. Also, the overuse of
literals increases the maintenance burden because if a change must be made, then
al instances of the literals would have to be changed.

Example #ifver and #ifnver directives

These directives are used to direct the compiler to compile a code block based on the
systemsinternal version number. For example, from version 4.1.0.0 on beyond,
EsiObjects supports Static methods.

Prior to version 4.1, it would have been necessary to create an object and bind it to an an
O% asfollows:

Creat e O¥at abase=MyLi br ar y$Dat abase

L anguage Concepts 25

Reference to an Initialize method within the Initialization interface would have had to
look like this.

Do O/Dat abase. I nitialization::Initialize

However, from version 4.1 and on, static methods can be accessed directly viathe
library$classname reference as follows:

Do MyLi brary$Dat abase. I nitialization::Initialize

If you want to accomdate installing code in older and new versions, you would use the
directives asfollows:

#ifver 4.1.0.0

Do MyLi brary$Dat abase. | nitialization::Initialize
#endi f

#ifnver 4.1.0.0

Do OYbat abase.Initialization::Initialize

#endi f

Message Syntax

This section describes the EsiObjects messaging syntax. A message is the way you access
amethod or a property of an object. In ESiObjects, you can use the message syntax alone
or as an argument to the DO command.

The following is the syntax for methods and properties:
ows::= oref. {(L keyword)} {*} service
fullclassname

An object-with-service (ows) reference includes the following:

Oref is an object reference, or the name of a class
preceded by an underscore.
fullclassname Is the full library$class specification. Using the

fullclassname in lieu of an oref forces the
system to message the method of a class as
static. The Static property of the method must
be turned on.

a period (.) is a delimiter

Keyword is a list of optional keywords as described in the
table Method and Delivery Keywords.

* is an asterisk (*) that indicates an ancestor-
method call

Service is the following:

servicename{methodactualist}

The following is the syntax of a service name (servicename):

L anguage Concepts 26

servicename ::= {interface::} method
@name@

L anguage Concepts 27

where:

Interface is an interface that explicitly specifies the
interface containing the method (If an interface
is not specified, the method's primary interface
is used.)

Method is a method or property name

@name@ is class element indirection that evaluates to a

valid service name

The following is the syntax for a method actual list (methodactuallist):

Methodactuallist ::= (methparams)
@(expratom V methparams)

A method's actual parameter list consists of the following:

* Method parameters (methparams)

* Anexpression atom in parentheses whose value are method parameters (@(
expratom V methparams))

A method actual list is not allowed in a GOT O command.

Method parameters can be passed positionally as expressions, or by keyword using the
format keyword:expression.

methparams ::= L { keyword : } expr

When passing parametersin a method actual list, all parameters are passed positionally
until the first keyword parameter is encountered, then all remaining parameters must be
passed by keyword. If the first parameter is passed by keyword, then all remaining
parameters must be passed by keyword.

Message Delivery Keywords

The following table describes the message delivery keywords that affect the process of
delivering a message to an object.

Keyword Description

EXISTENCE If the object does not exist, the method
returns NULL ().

FILTER Unknown parameters are ignored.

KNOWS The method returns NULL (") if the object
does not implement the method.

PRIVILEGED Calls the method in a privileged mode.

(Privileges are required.)

Reserved $Unknown Method and Interface Name

If amethod specified within a message does not exist within the specified interface and
the $Unknown method exists, it will be executed. Thisis a convenient way to provide
default execution for aserviceif it does not exist.

L anguage Concepts 28

The same concept applies to the interface specified within a message. If the specified
interface does not exist and a $Unknown interface does exist, it will be accessed.

The reserved name must be spelled exactly as $Unknown.
How to Tell Methods and Properties Apart

The only reliable way to tell methods and properties apart is by their names. Methods and
properties can be chained together when they return object references. For example, the
following command refers to the property Elements(T%L oop) of the object T%Object12,
where T%L oop can be thought of as an array subscript value.

SET T%bj ect 12. El enent s(T%.oop) . Text =" Esi Obj ects Control "

This property's Vaue accessor returns an object reference, and the Text property of that
object isreferred to next. The Assign accessor of this property is activated, with the value
"EsiObjects Control" as a method input parameter.

For more information about using accessors, see the Using Accessors section of the
Esi Objects Programmer's Reference Guide.

Examples

The following example references the GetBaseltem service of $SELF. Thisserviceis
probably a method rather than a property because its name implies a procedure rather
than an attribute.

SET T%EntryNunber =$SELF. Get Basel t em

The following example calls the IssueError method in the FM Uil interface of $SELF.
Two parameters are passed positionally to the method.

DO $SELF. FMJtil ::1ssueError("FM BAD DX","Bad index in file.")

The following example calls the Assign accessor to copy the contents of array node
T%Field of the instance variable 1%RequiredFld into the array node T%Field of the
RequiredFields property in the T%NewObj object's FMULtil interface.

S TY%NewObj . FMUti | : : Requi r edFi el ds(T%-i el d) =l %Requi r edFl d(T%i el d)

The following example references the Name and Library properties of the class
Collection. Note that the class name is preceded by an underscore. (Normally class
references include the library, as well.)

SET T%.i brary=_Col | ection. Li brary
SET T% ass=_Col | ecti on. Nane

DO $ENV. Assert ("Class: "_T%.i brary_"$"_T% ass)

Callback Syntax

The $CALLBACK function returns a callback frame identifier used in calling back to a
public label in the current method. This function passes in callback and type information.

L anguage Concepts 29

A method uses this function to create such an identifier, which is then passed to an
external object. The external object can then call the label directly without incurring the

overhead of afull-blown method call. The callback runsin the context of the object that
created the callback.

L anguage Concepts 30

The syntax of acallback can be one of the following:

D{CO { postcond } SP < expratom>{ (L expr)} { postcond }
G OrTO { postcond } SP < expratom > { postcond }
$$ < expratom> { (L expr) }

The expression atom enclosed in angle brackets must evaluate to a callback frame
identifier. Inside the callback, the value of $QUI T varies according to the type of
callback that is made.

Callback Types and Options

When acallback is created, certain other information can be specified in addition to the
callback label. The type of callback determines the stack frame where the callback occurs
and the state of its method-related symbols.

Type Description

Original Callback to creator's stack frame.

Capture Callback capturing creator's method-related
symbols.

Initialized Callback that starts with a clean variable context.

Callback Options are true or false flags that can be specified on some types of callback.
They are not mutually exclusive — it is possible to have a callback that is persistent and
additive, as shown in the following table;

Option Description Applicable Types

Persistent Survive for the duration of the Capture, Initialized
creating object.

Additive Preserve variable state between Capture, Initialized
calls.

Original callbacks are the most common. They dispatch directly to the actual EsiObjects
method stack frame that created the callback. (Note that the EsiObjects method stack is
not the same as the underlying M process stack.) The callback is automatically freed
when that stacks frame exits. Therefore, the callback can only be made from methods
called before that stack frame has exited.

Original callbacks are often used for enumeration and searching operations. The method-
related symbols of the method that created the callback are aways visible during this
kind of callback. Such callbacks are always additive and are never persistent.

L anguage Concepts 31

The following example illustrates a simple enumeration operation.

SET T%Cal | Back=$CALLBACK(UPDATE, 0)

SET T%Resul t =0

DO T%bj ect 12. Count | t ens(T%Cal | Back)

DO $Env. Qut put ("Total itens found: "_T%Result)

QT

UPDATE : Cal | back handl er
SET T%Resul t =T%Resul t +1
QT

The method creates an original (type 0) callback to the label UPDATE in the variable
T%CallBack, and sets an accessor variable T%Result to theinitial value 0. It then passes
the callback as a parameter of the Countltems method for two separate objects. Whenever
Countltems detects a problem it performs the callback. Each time the callback is made,
the subroutine in UPDATE increments T%Result. When Countltems returns, T%Result
istherefore equal to the number of callbacks made during the two method calls.

Capture callbacks record the callback creator's method-related variables. If the calback is
additive, then changes to those variables are preserved between calls. If it is not additive,
then the variables always are reset to the value at the time the call was made. If the
callback is persistent, then it survives for the lifetime of the creating object, or until itis
explicitly freed with the SFREECB function.

The following example enumerates all itemsin collection T%Collection. The variable
T%Sum is a cumulative sum of the value properties of each item. Asthe items are added,
the output window (T%OutWind) is updated with the current sum.

SET T%Cal | back=$CALLBACK(Sum 1, 1)
SET T¥%Sum=0, T¥ut W nd=I %
DO T%Col | ecti on. Enum(T%Cal | back)
QIT
Sun(Qbj) ; Sum each obj ect
SET T¥%SumeT%Sum+Chj . Val ue
SET TY%0ut W nd. Text =T%Sum
QT

Initialized callbacks are used internally as the backbone of events and watches. The
callback starts with an entirely clean variable context. However, if it is additive then any
changes to those variables are carried over to succeeding callbacks.

Callback Ownership and Lifetime

The creator of acallback is usually considered to be its owner. Only the owner should
free the callback.

The lifetime of a callback never extends beyond the lifetime of the creating object. If the
object dies, the callback is automatically freed. Original callbacks continue to exist until
the creating stack frame terminates, when they are automatically freed. Nonpersistent

L anguage Concepts 32

callbacks are freed whenever the incarnation of $ENVIRONMENT changes (in other
words, whenever EsiObjects is shut down or restarted). In general, Capture and
Initialized callbacks should be freed explicitly with $SFREECB when their usefulness has
ended.

Documenting Callbacks

All methods that create callbacks or call them should clearly document the callback
interface they assume. This includes the following information:

* Thenumber of parameters, if any

* The purpose and use of each parameter

* Whether the callback isto be made as a subroutine or extrinsic function
» The expectations of callback ownership

Note that the validity of callback parametersis determined only at run time. This adds to
the importance of adequate documentation.

Extrinsic Functions - Introduction

Extrinsic functions are user-written functions, which use a parameter passing mechanism.
The following is the syntax of an extrinsic function:

$$labelref({argument}{,...})

where:

$$ identifies an extrinsic function call

labelref is a line label or entry reference

argument is an actual argument list that can be one of the
following:
value_expr
.name_expr
where:
value_expr is a valid expression
.name_expr Unsubscripted local variable

name, or an indirect reference
that evaluates to an unsubscripted
local variable name

Entriesin an actual list can be passed by reference or can be passed by value. Pass by
reference occurs when an entry in the actual list has a period before it. Pass by reference
evaluates the argument as a pointer to alocal symbol and passes the pointer to the called
subroutine. Pass by value evaluates the argument as a value expression and passes the
value to the called subroutine.

L anguage Concepts 33

Note the following:

« Anerror occursif aformal list is shorter than the actual list. An actua list can be
shorter than the formal list.

* Anactuad list can be an empty list. An empty list is defined with open and closed
parentheses and no actual list arguments.

* A formal list can aso be an empty list. An empty list is defined with open and
closed parentheses and no formal list arguments

* Indirection isnot allowed in the formal list.
* Namesin formal lists must be unique.
* Only the length of aline restricts the length of an actual list and aformal list.

* Anactuad list that is passed by value can be any valid expression and does not
have to be alocal variable name.

* Anactuad list argument that is passed by reference must be alocal variable name,
or an indirect expression that evaluates to alocal variable name.

* WhenyouuseaDO, GOTO, or an extrinsic function with an entry reference
(LabelRoutinename), you are leaving the context of the object. Thisviolates the
concept of encapsulation and generally is not recommended.

For more information about using extrinsic functions, see the DO, NEW, and QUIT
command sections.

Extrinsic Function Examples

The following example shows how to find the sguare root of a number using an extrinsic
function.

SORT(X) QUIT X**.5

The following example shows an error output function that returns the level of the error
and the text associated with the error.

ERROR(Level , Text) ; Error output function
IF Level <3 QUIT O
DO $ENV. Report Error (Text)

QT 1
Syntax of an Extrinsic Function Callback

The following is the syntax of an extrinsic function callback:

$$<chref>[(cbactlist)]

L anguage Concepts 34

where:
Cbref is an expratom V as a callback frame ID string
Cbactlist is a list of parameters to be passed positionally the
callback by value.
For example:

SET TYNext =$$<T%Sr ch>
SET TUKey=$$<T% kup>(T%ey)

L anguage Concepts 35

Using Expressions

Expressions

Arguments of EsiObjects commands are made up of expressions. Expressions, which are
character strings, can contain one or more elements and are connected by operators. An
expression yields avalue when it is interpreted. An expression must contain at least one
element, which is called an expression atom.

Expression atoms can be one of the following:

e Litera
e Variable
e Function

» Expression atom preceded by a unary operator
* Messages

There are three types of operators:
* Indirection (only the INDIRECTION operator)
e Binary
 Unary

Expressions can be composed of one expression atom or can be made up of a series of
expression atoms separated by binary operators. Binary operators test the relationship
between two expression atoms or expression and return aresult.

Unary operators perform an operation on a single expression atom or expression to the
right of the operator.

For more information about messages, see the Message Syntax section of this guide..

Literals

There are two types of literals:

e Numeric

» String

L anguage Concepts 36

Numeric literals are strings that get evaluated as numbers. A numeric literal contains only
the following:

* DigitsOto9

* Unary MINUS (—) operator

e Unary PLUS (+) operator

» Period or decimal point character

» Letter E (for exponential notation)
The following is the format of exponential notation:
{-} mantissa{ -} exponent

Exponential notation lets you enter very large or very small decimal numeric literals. The
expanded result cannot exceed 31 characters.

String literals are sets of zero or more of the 128 ASCII characters. Y ou must always
enclose strings in quotation marks. String literals can consist of the following:

* Numbers
* Uppercase and lowercase |etters
* Punctuation characters (for example, $, !, or &)
» Control characters
The only limitation on the length of astring is on the length of aline (511 bytes).

Evaluating Expressions

In EsiObjects, all binary operators share the same precedence. Statements are evaluated
from left to right in the following sequence:

» All occurrences of indirection

e All unary operators

» All expressions in parentheses

» All expressions with binary operators

Y ou can change the order of evaluation with parentheses. Expressions in parentheses are
evaluated (in aleft-to-right order) before the entire argument gets eval uated.

Y ou can also concatenate expressions with the binary CONCATENATE (_) operator

L anguage Concepts 37

Variables

Syntax of a Variable Name

A variableis areference to a storage location. A variable can be unsubscripted or
subscripted. A subscript can contain integers (positive or negative), decimals, numeric
(positive or negative), or string literals.

The syntax of avariable in EsiObjects, which can be used on some or all of the references
to the variable, isasfollows:

Code%Name{ subscriptl, . . . subscriptn}

where:

Code is one of the codes defined in the table Variable Names and
Scoping Codes, which determine explicitly the scope of the
variable

% is a one-character delimiter that separates the code from the
name

Name is the name of the referenced symbol. Symbol names have a
permitted length of 1-31 alphanumeric characters. The first
character must be alphabetic. The are case sensitive, that is,
the symbol ABC is different from AbC.

Subscript is an expression that uniquely identifies a node in an array

Variable Names and Scoping Codes

The following table describes the different kinds of variable names supported by
EsiObjects. Note that the codes in the table are not case sensitive.

Variable Code Scope Description
Parameter Porp Single method A variable whose value is assigned
call when it's associated parameter is

supplied with the message. If the
associated parameter is not
specified, the parameter variable is
undefined. The variable's lifetime
ends when the method terminates

execution.
Temporary Tort Single method A variable whose value is created
call and modified as needed throughout

the method's code. The variable's
lifetime ends when the message
terminates execution. If a code is
not specified when setting a
variable, the default is generally an
temporary variable.

Accessor Aora Single method The same as a T% variable. Use
call T% in place of A%.

Instance

Constant

System

Global

Class

Local

NamePool

Universal

lori

CNorcn

Sors

Gorg

Corc

L orl

Norn

Uoru

Object

Between
directives

Life of the

environment

All contexts

Class and all
instances of it

Partition or NEW

Global

Same asaM
Global with
translations.

L anguage Concepts

A variable that can be accessed by
any code that is executed inside the
context of its object. When the
object dies, the instance variable's
lifetime also ends.

A variable that is a constant value.
It cannot be set directly. It can only
be set through the #const compile

directive.

A variable that is accessible to all
methods. Only privileged code can
alter system variables.

A variable that can be shared by all
users. A global variable exists until
it is specifically killed with the KILL
command.

Note that the circumflex () syntax
for globals is supported for
backward compatibility.

A variable whose scope is limited to
the context of a class object and all
instances of that class. It can be
accessed by any code that is
executed inside the context of the
class or one of its instances. Like
its class, a class variable exhibits
persistence. It continues to exist
until it or its class is explicitly
destroyed.

A standard M local variable whose
scope is global within its M
partition. Local variables can be
referenced from anywhere within
the partition in which they exist.
Their lifetime ends when they are
explicitly killed, their job terminates,
or their NEW context expires.

Local variables generally are not
used in EsiObjects.

A symbol table that can contain a
variety of symbols. The symbols
can be created, referenced, and
destroyed in any context.
NamePools objects can exhibit
persistence. Additionally,
NamePool objects can be used as
Domains.

A variable that is equivalent to a M
global. Not used that often.

38

L anguage Concepts 39

Domain Ooro Global across A variable that is available to any
processes — object that resides in a specific
same as a domain. It disappears when the
traditional UCI. domain is destroyed or it is

explicitly killed.

The variable reference T%A ccum refers to the accessor variable Accum, and the variable
reference 1%Height refersto the instance variable Height.

Value of Variables

A variable can evaluate to two types of valuesin EsiObjects:
* Built-in
* Object identifier (OID)

Built-in values are the standard values supported by M. An OID is a special EsiObjects
handle to an object. Built-in objects are normally treated the same way as M symbols,
although messages can be sent to them if necessary.

The following table describes the different types of built-in classes.

Built-In Class Description

BuiltinString Any M string value. Restrictions of length or the
ASCII characters that can be used usually
depend on the native M system. A built-in string
can contain an OID, but it generally treats the
OID as a string rather than as an object.

BuiltinNumeric An M string that is interpreted numerically. There
is nothing to prevent string values from being
assigned to a BuiltinNumeric symbol, but it
generally is interpreted as a numeric value.

BuiltinBoolean An M string that is interpreted logically. Like
BuiltinNumerics, any value can be assigned to a
BuiltinBoolean symbol, but the value generally is
interpreted logically.

BuiltinArray A standard M array that can contain any number
of nodes. The limitations on BuiltinArray
subscripts and values are imposed by the native
M system. In evaluating these limits, keep in
mind that a BuiltinArray instance variable can
have its own root at an M array node.

In contrast to built-in symbols, an OID is an encoded string that is used as a handle to an
object. Because a built-in string can contain any characters in the ASCII character set, it
is difficult to devise areliable test between built-ins and OIDs. Y ou can use the $EXI ST
function to make this distinction.

L anguage Concepts 40

The following table describes the value returned by $EXI ST in avariety of cases:

Type of $EXIST Argument Value Returned
Built-in string, numeric or Boolean B
Built-in array B
OID handle of nonexistent object 0
OID handle of existing object 1

Variable Scoping

Variable Scoping - Introduction

The scope of avariable defines the set of messaging contexts in which that variable can
be referenced. In M, the scope of alocal variable restricts its accessibility in such away
that it cannot be referenced outside the context of the partition in which it is contained.

Thelifetime of alocal variable ends when its job terminates and the partition dies.
Similarly, an instance variable of an object cannot be referenced outside the context of
that object and is destroyed when its object dies. For this reason, instance variables are
hidden inside their objects and cannot be directly accessed by other objects. This process
of hiding is known as encapsulation.

For more information about encapsulation, see the What is an Object? section of the
Esi Objects Programmer's Reference Guide.

Why Is Scoping Important?
Scoping isimportant for the following reasons:

» Allowsyou to refer to the instance variable X and always get an instance variable
of the current object, without having to specify the object identifier (OID) of the
object whose instance variable is being referenced. This makesit easier to write
generic code.

» Allowsyou to call other methods inside the context of a single method call without
having to worry that the scoped variable is going to get overwritten or modified by
apoorly behaved method that gets called. If abug causes such avariable to
contain the wrong value, scoping of variables makesit much easier to locate that
particular bug.

» Prevents you from accidentally modifying variables that are outside the scope and
explicitly prevents scoped variables from being tampered with externally.

» Allowsyou to define short, concise, simple names without needing to worry that
those names are aready being used outside the scope of a given variable. For
example, it is possible to define atemporary variable Data, scoped inside asingle
method call, without having to worry that some other method is using a temporary
variable of the same name.

L anguage Concepts 41

Implicit Scoping

Scoping considerations are taken into account whenever avariable is referenced in
EsiObjects. If avariableisreferenced by its name without scoping information, then
EsiObjects must determine the scope of the variable.

For example, suppose a method refers to the variable Text. How does EsiObjects know to
which kind of variable the symbol Text refers? EsiObjects uses five criteria to determine
the scope of a symbol, in the following order of precedence:

» If Text isdefined as an instance variable by the class, then the symbol Text isan
instance variable.

» If Text isdefined as a class variable of the class, then the symbol Text isaclass
variable.

» If the symbol Text isdefined as a parameter of the method, then the symbol Text is
the associated parameter variable. If Text is defined as some variable into which a
parameter is mapped, then the symbol Text is the mapped variable.

» If the symbol Text has been encountered higher up in the method, then this symbol
Text isthe same symbol as the symbol Text encountered nearest the top of the
method.

* If none of the preceding four conditionsis satisfied, then the symbol Textisa
universal variable.

In compiling a method, EsiObjects records the default scope of each variable encountered
in atop-to-bottom scan of the method's code. This information isused in number 4 in the
previouslist. Thefirst time avariable is encountered in the scan, it defines the default
scope for that variable whenever it is encountered in the method. The scanning process
proceeds in a strict top-to-bottom, left-to-right fashion without regard to order of
evaluation or order of execution.

Because the first reference to a variable encountered in the method determines the default
scope of that variable for the entire method, be aware that reorganizing the codein a
method can occasionally result in changing which reference to the symbol is encountered
nearest the top of the method. As aresult, the default scope of the variable can be
changed inadvertently if both explicit and implicit scoping is used in the same method.

These rules for determining the scope of avariable also apply to the arguments of the
NEW command or to the symbolsincluded in alabel's formal parameter list, which only
allow local variable names.

Explicit Scoping

EsiObjects provides syntax for explicitly defining the scope of avariable. It is possible to
have two symbols with the same names but different scopes in the same method. In such
cases the first symbol encountered sets the default scope for implicitly scoped symbols of
that name in the entire method.

L anguage Concepts 42

For example, if T%Sym is encountered near the top of amethod and L%Sym is
encountered later on, followed by a number of different references to the symbol Sym,
then the references to Sym are scoped as T%Sym because it occurred nearest the top of
the method. However, if the reference to L%Sym is moved higher up in the method than

T%Sym, then it defines the scope of the Sym references.

Scope Hierarchy

EsiObjects variables are scoped according to a specific hierarchy. That hierarcy is

illustrated in the diagram below.

0% Variahle

C%Variable

5% Variahle

I%Variahle

PY%Yariable

T%Yariahle

Variable Scoping Hierarchy

Variable Inheritance

Damain: Global across processes,
in zame UCI Lives until killed.

Class: Global across pracessing, in
same UCH visible in methods of the
same class. Lives as long as the
class or until killed.

Swstemn: Local to a process
(session), and visible to all ahjects
running in that process. Lives as
long as the process or until killed.

Instance: Gives an object its state.
Lives as long as the object ar until it
iz killed.

FParameter: Local to a methods
gxecution. Defined an input of
named parameters. Exists within the
execution context of the method.

Temparany: Local to a methods
axecution. Defined within the hody
of a method. Exists within the
execution context of the method.

The following diagram shows the difference between class and instance variables:

L anguage Concepts 43

Writer Class
_ o\ [l9eName="smith* | |
instance: \instance
' | 1%Type="Nonfiction" | k
New Instance |C%Instanc&=2 | Older Instance
l%oName="smith" | [19%6Name="Williams" |

subclass

|I%Type="Nonfi ction” | |I%Type="Techni cal" |

FictionWriter Class

instance.” —
R | [%Type="Fiction" |

New Instance |I%Genre="Mystery' |
[19%6Name="smith" |

|C%I nstances=1 |

| 1%Type="Fiction" |

|I%Genre="Mystery' |

In this diagram, the class Writer, which has two instances, is a superclass of
FictionWriter, which has one.

Writer implements a class variable called I nstances, which is common to all instances of
that class. (Perhaps this variable would keep track of the total number of currently
existing instances of the class.) In other words, areference to the variable C% I nstances
from within either instance of Writer would return the value 2. Because FictionWriter
isasubclass of Writer, it inherits the definition for Instances (but not itsvalue.) Any
instance of FictionWriter that refersto its Instances class variable will thus get the value
1. Changesto thisvalue will not affect Writer's class variable, and vice versa

Writer implements two instance variables, called Name and Type. All instances of
Writer and its subclasses will be created with the default values of " Smith" for Name
and " Nonfiction" for Type. (Note that the newly created instance of Writer has those
values.) Since each instance of the class has its own instance variables, those values can
change without affecting other instances. (Note that the older instance of Writer has
acquired different values since it was created.) Subclasses of Writer will generally
inherit the same instance variable definitions (note that the new instance of
FictionWriter also has Name and Type variables) However, a subclass may override
those variable definitions, by changing the particulars. Note that FictionWriter's Type
variable is defined with adefault value of " Fiction" , and the new instance is created with
that value.

Subclasses may also extend the superclass variables by defining additional variables that
are not known to the superclass. FictionWriter defines an instance variable called
Genre, which defaultsto " Mystery" . The newly created instance reflects this, but the
superclass and its instances are unaffected.

Variables are not inherited if they are marked as Private. For example, if the Name
instance variable had been marked as private at the class Writer, then FictionWriter

L anguage Concepts 44

would not have inherited it. Most instance variables are Public. A private variable (or
method, property, etc.) is only defined when there is some compelling reason why it
would be inappropriate for subclasses to inherit it.

Example: Class Variable Inheritance

As stated above, class variables are only accessible to the class that implements them.
The definition of aclass variable isinherited by subclasses, but any methods compiled at
the level of the subclass will access another copy of the class variable, stored with the
subclass. If asubclass inherits amethod from a superclass, then any class variable
references in that method will access the class variable at the superclass, not the class
variable at the inheriting subclass. The following example illustrates the proper use of
class variable inheritance.

In this example, the superclass hasalist of errorsin aclassvariable C%Errors. The
subclass has an entirely different copy of C% Errors. Since the subclass cannot access
the contents of the superclass variable, it calls code at the superclass, designed to
accomplish this same task.

The method I nitializeError tableinitially sets up the class variable. It isonly run once,
as part of classinitiaization. The method FindError iscalled to return a descriptive
string of an error, whenever one is needed.

Superclass method "InitializeErrorTable"

Input: () ; Initialize Error Table
SET C¥Errors("NCERR')="No error"
SET C%Errors("GENERAL") ="General Error"
SET C%Errors("BAD NP')="Bad | nput"

Q
Superclass method "FindError"

I nput: (T%Err="NCERR') ; Find Error

IF "$data(C¥Errors(T%Err)) SET $RETURN="Unknown Error "_T%Error QU T

SET $RETURN=CYEr r or s(TY%Er r)

L anguage Concepts 45

Subclass method "InitializeErrorTable"

Input: () ; Initialize Error Table
SET C%Errors(" NCERR") =" OK"

SET C%Errors("OUTRNG') ="CQut of Range"

QT
Subclass method "FindError"

| nput: (PY%Err="NOCERR') ; Find Error
| F $data(C¥Errors(P¥err)) SET $RETURN=CY¥Errors(P¥%Err) QU T

SET $RETURN=$SUPER. Fi ndErr or (P¥&Err)

QUT

When the FindError method isinvoked for the subclass, it examines its own class
variable C% Errorsto determineif it contains an entry for the error. If so, it returnsa
description of the error. However, if it does not know about the error, it calls FindError
for the superclass, in hopes that perhaps the superclass understands the error.

InitClassVars and InitSysVars Methods

InitSysVars

The InitSysVars method is called whenever anew object is created. For example, if
class Patient implements an I nitSysVar s method in its Factory interface, and a new
instance of the Patient classis created, then the I nitSysVar s method isinvoked to set up
some of the instance variables of that class.

The InitSysVars method is the primary means for defining special-purpose, inheritable
code to set up instance variables. Part of this method is generated automatically
whenever instance variable definitions are added in the variable definition editor. This
part occurs between the EOAUTO START and END lines.

InitClassVars

The InitClassVar s method is called whenever anew classis added to the system. For
example, if abrand new class called Argyleis added as a new subclass of Plaid, and the
Plaid class implements the I nitClassVar s method in its Factory interface, then this
method will be executed to set up the class variables

The InitClassVars method is the primary means that EsiObjects uses to implement class
variable inheritance. Part of this method is generated automatically whenever class
variable definitions are added in the variable definition editor. This part occurs between
the EOAUTO START and END lines.

L anguage Concepts 46

General Considerations

Y ou must never insert or modify code between the EOAUTO START and END lines,

because that code is liable to be overwritten by EsiObjects the next time that the method
source is automatically generated from the variable definition, which can occur under a

variety of different circumstances.

The programmer who wishes to add setup code for class variables can use the
InitClassVar s method to do so, provided that the setup code does not fall between the
EOAUTO START and END lines. Note that the InitClassVars method contains a
$SUPER call allowing the same method to be executed at the parent class. Codeis
usually added after the $SUPER class.

NamePool Variables

NamePool variables reside in an object created from the BaseSNewNamePool class. This
object is essentially a symbol table that is sharable by other objects, that is, if an object
owns the hame pool objects OID, it can access all name pool variables contained within
the pool object.

An additional feature of name poolsisthat they can be linked into hierarchies through
methods available in the NewNamePool class. When name pools are linked into
hierarchical structures, the variables are inheritable.

Explicit reference to a variable within a name pool is as follows:
N%(OID)VarName

where OID isthe name pool objects OID and VarName is the name of the variable
within the pool. When used in this format, the EsiObjects compiler builds in the required
support needed to produce a value.

An alternative implicit access is available that avoid specifying the (OID) specification
on every variable reference. By setting the $Pool specia variable to the OID prior to
using the name pool variable, the (OID) explicit reference to the pool object can be
ignored. For example:

Set $Pool =0 D
Set NWWar Name="Val ue"

The value of $Pool is stacked and exists within the execution scope of the current
method. Asin the case of the explicit syntax, the compiler resolves the reference to the
proper name pool object.

NamePool variables are very powerful. When aneed arises for symbol tables that are
sharable and optionally inheritable, this variable scope should be used.

L anguage Concepts 47

Name Pool Inheritance

NamePool variables reside in an object created from the BaseSNewNamePool class. This
object is essentially a symbol table that is sharable by other objects, that is, if an object
owns the name pool objects OID, it can access all name pool variables contained within
the pool object.

Name Pool inheritance occurs when name pool objects are linked into hierarchies. In
such cases, the child name pool will inherit those variables in the parent name pool that
are not explicitly overridden. The following method call is used to create a name pool in
the variable T%ChildPool. This new name pool isa child of the 1%ParentPool instance
variable.

SET T%Chi | dPool =l %4Par ent Pool . Fact ory: : Cr eat eDescendant

Note that you can only link two name pools together when creating a new one, and that
the newly-created name pool must be a descendant of the previously-existing one.

Grouping Code into Interfaces

In EsiObjects, program code implemented by any class is generally inherited by its
subclasses. Program code is grouped into interfaces, with the Primary interface being
used for messaging by general users of the object, and al other interfaces being special-
purpose in nature.

Interfaces

Each class implements at least one interface, the Primary interface. Thisinterfaceis
used for messaging by general users of the object. A large percentage of classes
implement a Factory interface, which isreserved for the details of object creation and
destruction. Many classes also implement other, special-purpose interfaces. Knowing
whether a class requires one or more special-purpose interfaces is by no means an exact
science. However, the following guidelines constitute useful general principles:

* Any methods or properties (such asits CREATE and DESTROY methods) that
are used to define the object's initial state when it is created, or to clean up the
object asit is being destroyed, usually go in the Factory interface.

* (Exception: the Create and Kill accessors of a property, if they exist, are most
often defined in the Primary interface.)

* Any methods or properties that are suitable for use by any external object should
gointhe Primary interface. For example, if aDictionary collection contains a
group of objects arranged by the value of a common property, then that property is
usualy contained in the Primary interface.

* Any methods of properties that require a specia relationship to the object should
go in a special-purpose interface. Such special relationships are described below.

L anguage Concepts 48

Special Relationships

Sometimes, different instances of a same class will have a special-purpose interface, or a
factory object dedicated to producing instances of a specific class might communicate
with those instances using a special-purpose interface. In both these cases, it would be
inappropriate for "the average object” to make this type of communication.

The name of a special-purpose interface should reflect the purpose, and where possible
should not conflict with special-purpose interfaces having different meanings in other
groups of classes.

Sometimes, when special relationships between classes are required, the objects will
implement "challenge code" as part of their special-purpose interfaces. For example, if a
certain method can only be invoked by one particular object, then the program code for
that method might check SCAL L ER before going ahead with itstask. In other cases,
more elaborate challenge code might be appropriate. (Thisis conceptualy similar to a
bank refusing to give out information about an account to someone who is not an account
holder.)

Interfaces and Inheritance

Interfaces are groupings of services, that is, methods, properties, events and relationships
within aclass. A number of related services are usually part of the sameinterface. Every
classimplements at |east one interface, the Primary interface.

Assume there exists a Per son class that implements a Primary interface containing a
Name property. Now assume there is a Physician classthat is a sub-class of Person
(meaning that a physician object is akind of person object.) Physician automatically
inherits the Name property from Per son.

The subclasses of aclass will always inherit any interfaces that it defines. (Of course, all
the methods and propertiesin that interface will be part of the inherited interface.) If a
subclass wishes to extend a special-purpose interface, then the entire interface must first
be overridden. The subclasses of a class will always override the Primary and Factory
interfaces.

Within an interface, elements such as methods, properties, and event templates are
individually inherited by subclasses, except when defined as private. Any inherited
element may be overridden at alower level. If the overriding element is private, then
subclasses will inherit the parent implementation. (For example, if Pediatrician's
Specialty property had been private, then any subclasses of Pediatrician would inherit
the version of Specialty defined by Physician.)

Code Inheritance in Projects

From alanguage perspective, each EsiObjects project is treated as a subclass of
Base$Application. Thus, al of the Procedures, Command Handlers and Event
Handler s are treated as methods in the project's Application class. They can be
inherited between projects by defining a new project as a subclass of an existing project.

L anguage Concepts 49

An alternative isto create a subclass of BasebApplication, and to define multiple
projects as children of your new Application subclass. That way, some of the code can
be promoted to the common parent, and shared among multiple projects.

L anguage Concepts 50

Properties and Accessors

Properties are inherited by subclasses, and each accessor is inherited separately. When a
subclass overrides a property, it will still inherit all its accessors. It may then explicitly
override one accessor while continuing to inherit another.

Person
Name (value)

subcl ass

Impersonator

|Name (a$ig|1n) |

In this diagram, the class Per son implements a Name property with a value accessor,
allowing external objects to obtain the value of the Person's name. However, externd
objects cannot assign the value of the Name property (just as no one else can change your
name for you.) Impersonator isasubclass of Person. Let's suppose that an
Impersonator object can assume adifferent Name. In that case, it might sometimes be
inappropriate for an external object to attempt to assign the | mper sonator object's Name
property. Thusit implements an assignment accessor.

In this example, | mper sonator has overridden the Name property and implemented an
assignment accessor, while continuing to inherit the value accessor from Person. Any
subclasses of I mper sonator would actually inherit both accessors.

Mix-in Classes and Multiple Inheritance

There are two forms of multiple inheritances supported by EsiObjects.

1. Supertyping - asubclass has two fully specified parents, both of which are
intended to represent full-bodied classesin their own right.

2. Mix-ins- one of the superclassesis a special kind of abstract superclass designed
to be used only with multiple inheritance.

Supertyping represents a break with the classic, taxonomic philosophy of building the
class hierarchy. It means that one kind of object (the subclass), isafusion of itstwo
superclasses. Supertyping is a controversial approach to use, because it violates the strict
descendant-tree structure of ataxonomy. More practically, it leaves the door open to
multiple inheritance conflicts.

Multiple inheritance conflicts occur when more than one superclass implements an
element of the same name, in the same interface, and this element is not explicitly
overridden by the child class. EsiObjects automatically resolves multiple inheritance
conflicts using proximity: an immediate parent will always take precedence over aless
immediate one. However, if the two competing superclasses are the same distance away

L anguage Concepts 51

in the tree, then a conflict will result. In such cases, the child class must override the
conflicting element. It can then use the syntax for explicit vectoring to generate acall to
the appropriate superclass.

Mix-ins are special-purpose classes designed to facilitate strategies for avoiding multiple
inheritance. Mix-in classes are always abstract, never concrete, and they generally deal
with one specific aspect of an object's state or behavior. Multiple inheritance conflicts
can also occur with mix-ins, but they are less likely because of the general design
strategies generally associated with this type of class.

The difference between these two types is more philosophical than structural. While
EsiObjects has a special mix-in class type, the biggest difference between the mix-in and
supertyping forms of multiple inheritancesisin the class design process, rather than in
any specific feature of the classes themselves. In other words, it islargely the
connotations that the two class types have in the minds of programmers (similar to the
difference between club soda and sparkling water).

Commands 52

Commands

A command is a name for an action that is performed. Most commands take arguments.
An argument can encompass a variety of syntactic elements (such as numeric
expressions, variable names, SET arguments) that define and control the action of the
command. Some commands are argumentless and some commands take arguments only
in certain circumstances.

Each command is labeled asto its ANSI Standard status as described in the following

table:
Status
Standard
Proposed
Extended
EsiObjects

Vendor

Description
Indicates that the language element is part of the M
ANSI Standard.

Indicates that the language element is being
proposed as an addition to the M ANSI Standard.

Indicates that the Standard language element has
been modified for use in EsiObjects.

Indicates that the language element is not part of the
Standard and is an extension of EsiObjects.

Indicates that the language element is M vendor-
specific.

Commands 53

BREAK

The BREAK command interrupts the normal flow of execution, invoking the EsiObjects
interactive debugger.

Format
B{ REAK} postcond

postcond ::={ : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.

Explanation

The debugger is an important tool and can be used frequently during the debugging
process. EsiObjects programmers can use this interactive approach to spot problems
quickly and verify that code is working as intended.

Comments
To use the interactive debugger, the following must be accomplished:

The debugger must be activated.

BREAK commands must be inserted in the code to activate the interactive debugger at
execution time.

A debug version of the code must be compiled.

Commands 54

CLOSE

The CLOSE command releases ownership of one or more devices owned by the current
process. In some cases, certain device-dependent operations can be performed as part of
this process.

Format
C{LOSE} postcond SP L closeargument

postcond ::={ : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.

closeargument
Can be one of the following:

expr { : deviceparameters }
@ expratom V L closeargument

where:
Expr is any expression whose value is a device identifier of
a device owned by the current process
Deviceparameters ::= deviceparam
(deviceparam {:deviceparam }...)
Deviceparam ::= expr
devicekeyword
deviceattribute = expr
Explanation

The CL OSE command gives up ownership of the devices specified in its arguments,
making them available to other processes. The format of avalid device specifier, the
range of available devices, and the valid device parameters are all M platform-dependent.

After a CL OSE operation closes the current device, $I O becomes some other device
identifier, usually the principa device $PRINCIPAL.

Commands

Comments
Keep the following points in mind when you use the CL OSE command:
* Thekinds of device parameters specified with CL OSE are generally related to
terminating use of the device.
* Multiple device parameters are enclosed in parentheses, separated by commas.
* Closing an unowned device has no effect.
» Thereisno argumentless form of the CL OSE command.

e HALT automatically closes all devices.
Related

OPEN command
READ command
USE command
WRITE command
$IO specia variable

$PRINCIPAL specia variable
DSM and MSM Examples

The following example relingquishes ownership of the device whose identifier isin the
symbol T%lnputDevice.

CLCSE T% nput Devi ce

The following DSM example reads lines of text from afile whose identifier isin the
variable T%File and echoes these lines to the principal device ($PRINCIPAL) until a
blank line is encountered, when the file is closed.

OPEN T%-ile:: 10

ELSE DO $Env. Qutput("Device " _T%ile_" is unavailable.") QUT
FOR DO QU T: T%.ine=""

. USE T%il e

. READ T%.i ne

. IF T%ine="" QUT

. USE $PRI NCI PAL

. WRI TE T%.i ne,!

CLCSE T%-i |l e

QT

55

Commands 56

The following MSM example reads lines of text from afile whose identifier isin the
variable T%File and echoes these lines to the principal device ($PRINCIPAL) until a
blank line is encountered, when the file is closed.

SET T%ev=51
OPEN T%ev: (T%-ile,"R")::10
ELSE DO $Env. Qut put ("Unable to access HFS') QU T
FOR DO QU T: T%.ine=""
. USE T%ev
. READ T%.i ne
. I F T%.ine="" QUT
. USE $PRI NCl PAL
. WRITE T%.i ne, !
CLCSE T%ev
QIT
DSM Examples

In the following example, the same device T%IlnputFile is closed and the device attribute
RENAME is specified with its value in the variable T%NewFileName.

CLCSE T9% nput Fi | e: RENAVE=TYNewFi | eNane

The following example specifies alist of device parameters, enclosed in parentheses and
separated by colons.

CLCSE |1 %°ri nt er: (FORMFEED: SPOQL)

Commands 57

CREATE

The CREATE command creates a new object of a given class or nested class. Various
kinds of information about the object can be specified when it is created.

Format
CR{EATE} postcond SP L createargument

postcond ::={ : tvexpr }

tvexpr evaluates to a truth-valued expression. Execution of the command is conditional
based on the truth-value of this expression.

Createargument
Can be one of the following:

crarg
@ expratom V L createargument

where crarg is defined as follows:
glvn ={library$} class{ (methodactlist)}{ :{ keywords}{: (L propname=expr}) }
The following additional definitions also apply:

class ;= libraryname$classname
classname
classname>classname>...
@expr@ V classname
crkey

(L crkey)

Base

Child

crkey ::= Class - expr
Fixed

Share

Name

keywords ::=

Domain

Commands 58

Explanation

The CREATE command is used to create an object. A three-step processis used to
create the object:

1. A primitiveinstance of the classis stamped out.
2. If the classimplements a CREATE method, it isinvoked.

3. Instance variable values are applied to the object as though with the ZAPPLY
command.

In addition to the required class name, the following information optionally can be speci-
fied:

* A method parameter list to be used when the CREATE method is called

* Alist of special object creation keywords and their values, as appropriate

» Alist of property names and their values

When property values are assigned with the CREATE command, each property value
assignment can have one of three outcomes:

» |If aCreate accessor exists for the property, then it isinvoked.
» Otherwise, if an Assign accessor exists for the property, then it isinvoked.
» Otherwise, awarning is generated.

This procedure is important, because for some properties the Create accessor and Assign
accessor do not both exist. The implications are as follows:

* Create accessor only

» Assign accessor only

» The property's value can never change, once the object has been created.
The same accessor is used by the SET and CREATE commands.

Note: When creating an instance of a nested class, the classname must be extended to
provide the path to the nested class. Thisis done by using the > character between the
class names. For example, Base$List>Iterator specifies the path to a nested class
Iterator within the class List which isin the Base Library.

The following table describes the keywords that you can use to create an object.
Keyword Description

Share A true or false value that determines whether the object is private or
shareable. If not specified, the object's shareability is the same as
that of the creating object. Child objects are not affected by this

keyword.

Child

Fixed

Stack

Class

Commands 59

If true or not specified, the new object isachild of the object that
created it. The object uses the parent's location to determine its own
location. If false, it is an independent, freestanding object.
Specifying a Domain can override this keyword. If Shareis used,
this keyword must be false.

Allows objects to be created at an explicit base location. The Base
keyword value is an expression that evaluates to a glvn. When Base
is specified, EsiObjects will generate an internal number and create
an OID from it and the Base values supplied. For example: If
Base=""ESIBR(“”Data’”)”, EsiObjects will create an OID for an
object by adding a generated number as the next level subscript
producing “~ESIBR(*”Data’”,3)".

Allows objectsto be created at a fixed location. This value must be
aglvn. Where the keyword Base provides a base glvn for
EsiObjects to create a unique OID from, the Fixed keyword lets you
specify a glvn that represents the absolute value used for the OID. It
isthe OID and the created object is mapped to that location. . For
example: If Base=""ESIBR(""Data’”)”, EsiObjects will create an
OID for an object without any alterations being made. You are
responsible for its uniqueness.

This keyword instructs EsiObjects to place the object within the
current call frame. This keyword overrides al other keywords when
used. Placing an object on the current call frame insures the
automatic destruction of the object when the call frame is popped
from the stack

Insures that the variableis class persistent. Thisis used when
creating objects within the context of a class (class variables).

Domain Not Implemented Y et
Comments

Keep the following points in mind when you use the CREATE command:

The use of the ZAPPLY command islegal only in the CREATE method, enabling
that method to validate or modify instance variable values before the CREATE
command has finished executing.

Two INDIRECTION operators (@Name@) are used for class name indirection,
which prevents ambiguity with other forms of indirection. For more information
about class name indirection, see the INDIRECTION operator.

When a method parameter list is specified, there are two kinds of parameters:
- keyword (keyword:expression)
- positional (expression)

Commands 60

After the first keyword parameter is specified, al remaining parameters must be
keyword parameters.

When the object is created, itsinternal reference count isinitialized to 1 (one). If
the DESTROY command is applied immediately after the object is created, the
object will be destroyed. However, if the PRESERVE command is applied n
times after the object is created, incrementing the internal reference count, the
DESTROY command must be applied an equivalent number of timesto
decrement the counter. Only after that will another destroy action actually delete
the object from the system.

Commands 61

Related
DESTROY command

PRESERVE command

ZAPPLY command
Examples

In the following example, a child object (to the creating context) of class Addressis
created. Its CREATE method is passed the positional parameters "Boston” and "MA". A
handle to the new object is stored in the temporary variable T%CustAddr.

CREATE T%Cust Addr =Fr amewor k$Addr ess(" Bost on", " MA") : Chi | d=1

The results of the following example are the same as those of the first example. The only
difference isthat class name indirection is used to specify the name of the class.

SET T%Cl assNanme="Fr anewor k$Addr ess"
CREATE T% Cust Addr =@%Cl assNane@ " Bost on", " MA")

In the following example, a shared (persistent) List object is created. The object will be
stored under the "UTILITY ($J) node.

CREATE | %Set =Base$Li st : (Base=""UTI LI TY($J)", Shar e=1)

The following example illustrates how to create a nested class object.

CREATE | %Adni t Dat e=HI S$Pat i ent >Admi t Dat e

The Hi s$Pat i ent >Adni t Dat e Syntax provides a path to the Patient classes nested class
AdmitDate.

Commands 62

DESTROY

The DESTROY command attempts to destroy an object, setting the value of $TEST
based on the success of the attempt.

Format

DE{STROY} postcond SP L destroyargument

postcond ::={ : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-

value of this expression.

destroyargument ::= expr V oref
@ expr V destroyargument

The argument of DESTROY is an object reference.
Explanation

The DESTROY command does the following:

» Before proceeding, checksto seeif the OID of the object has been protected (See
the $Protect function). If it has, the object cannot be destroyed.

* Decrementsthe interna reference-count by one. This command works in concert
with the PRESERVE command which increments the count. Only when the count
goes below 1 will the destroy action continue.

» If theargument is not an oref, or references an object that does not exist, no action
occursand $TEST isset to 1.

» |f the argument contains an oref of an existing object, that object's DESTROY
method isinvoked and its return value isinterpreted as true or false.

- If the DESTROY method returned afalse value (SRETURN=0), the
object is not destroyed. The DESTROY command sets $STEST to 0.

- Otherwise, the DESTROY method returned atrue value (SRETURN=1);
the object is automatically destroyed and $TEST isset to 1.
Comments

Keep the following pointsin mind when you use the DESTROY command:

* Thevery first action of the DESTROY command is to decrement the internal
reference counter and check if the counter went below 1. If it did, the destroy
action will proceed, calling the DESTROY method isit exists. If it did not, the
destroy action quits at this point, leaving the object alive.

* Anobject's DESTROY method does not need to remove instance variablesiif it
determines that the object can be destroyed. This is automatically done by the
DESTROY command.

Commands 63

* Thedefault return value of the DESTROY method is 1. It returns 1 if it does not
explicitly define another return value. (Other functions return NULL (") by
default.)

Please note that the DESTROY object has no effect on a virtual object, because virtual
objects have no symbol table to be removed. (Of course, the virtual object can
implement aDESTROY method that will destroy itstarget data.) The only way to
remove avirtual object isto KILL the variable containing the handle to the virtua
object.

However, it may be inappropriate for one object to make assumptions about whether
another is actual or virtual. For example, acertain classthat is declared virtual today may
become an actual classin the future. So a reasonable precaution, when eliminating an
object, isto both DESTROQOY it and KILL the variable containing the handle to the
object. If you want to eliminate the handle but have no intention of destroying object's
encapsulated data, then simply KILL the variable containing the handle to the object.

Finally, note that if a variable containing the handle to an object is scoped within the
current method (i.e. A%, T% or P% variables), then the variable will be destroyed
automatically when the method terminates. However, this may not result in the
automatic destruction of any actual object being referenced by it.

Related
CREATE command

KILL command
$REFERENCE special variable
$RETURN specia variable
$TEST specia variable

$PROTECT function
Examples
The following example destroys the Window object referenced by the symbol

T%Window, causing the window to disappear from the display and all of itsinstance
variablesto be removed.

DESTROY TN ndow
ELSE DO $Env. Assert (" DESTROY failed!'")

Commands 64

DO Command - Introduction

The DO command calls a subroutine or block. When the called code terminates, control
reverts to the point immediately following the DO command.

Format
D{ O} postcond SP {L doargument}

postcond ::={ : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.

doargument

Can be one of the following:

doarg

@expratom V L doargument

where:

doarg ::= dlabel {+offset} {*routineref} postcond
Aroutineref
label {*rname} (L actualparam)
Arname (L actualparam)
& package.externalrtn{(L actualparam)}
ows {(methodactuallist)}< expratom > (L expr)
*publiclabel

Explanation

The DO command calls some body of code as a subroutine. Its behavior is distinct from
GOTO inthat DO execution subsequently returns to the point immediately following the
DO argument from which the subroutine was called. In the case of GOTO, execution
never returns to that point.

Like GOTO, XECUTE and DO commands allow a postconditional to be applied to the
command or to any of its arguments. The following table summarizes the results when
the postconditional in either location istrue or false:

Result Postconditional on Command Postconditional on Argument
True Execute the command and its Execute that argument before
arguments. going on to the next argument or
command.
False Skip the command and all its Skip that argument and go on to

arguments. the next argument or command.

Commands 65

DO supports avariety of different forms:

The argumentless form calls a block beginning on the line following the line where
the argumentless DO command occurs. Thisform places STEST on the process
stack, which causes its value to be restored when the block is exited.

The entry reference form (label +offset”routine without parameters) callsa
subroutine without an actual parameter list. Thisform allowsan INDIRECTION
operator (@) before the label name and/or the routine name. This form does not
place $TEST on the process stack.

The label reference form (Iabel“routine with parameters) alows an actual
parameter list, providing for a certain level of independence between the calling
code and the subroutine. It does not support label name or routine name indirec-
tion. This form does not place $TEST on the process stack.

The external reference form (& package.externaroutine) allows routines externa to
M and EsiObjects to be called. Thisform does not modify $TEST.

The object-with-service form (obj ect.ser vice) accepts references to object
methods and properties. This form guarantees that $TEST is restored when the
serviceis exited. If the asterisk (*) is present, the method is called at the ancestor
class. The syntax is asfollows:

ows ::= Oref.{(L keyword)} {*} {interface::} service

- An object-with-service reference includes an object reference, a period,
and a service. Optionally you can add alist of delivery keywords, an
asterisk (*) for an ancestor-method call, and an interface to explicitly
specify the interface containing the method. If no interface is specified, the
method's primary interface is used. For more information, see the Message
Syntax section in this guide.

- Thelabd inheritance form (* publiclabel) accepts a reference to apublic
label inside the current method. The implementation of this method at the
ancestor classis called, rather than the implementation at the current class.
In thisway, functionality can be overridden and inherited by storing it in
public subroutines implemented within a method.

Comments

Keep the following points in mind when you use the DO command:

Any form of DO that specifies alabel and/or routine name does not place $TEST
on the process stack. When execution returns from the subroutine, any changesto
STEST arestill in effect.

The following lines of code are hard to evaluate. Without looking at the subroutine
MODIFY it isimpossible to determine under what circumstances the EL SE
command on the second line will be executed.

| F | %Hei ght' >l 9 dt h DO MODI FY
ELSE DO $Env. Qut put ("G eater")

Commands 66

The following are possibilities:

|%Height is greater than 1%Width. The | F on thefirst line sets $TEST to 0, and
execution drops down to the second line. Because $TEST is 0, the EL SE send
'Greater' to the output window..

|%Height is not greater than 1%Width. The | F on thefirst line sets$TEST to 1
and executes the DO. Inside the subroutine, three things might happen:

The subroutine MODIFY does not modify $TEST. When execution returns,
$TEST dtill equals 1 from the I F on thefirst line and the EL SE does nothing.

The subroutine MODIFY does modify $TEST, and when it exits STEST equals 1.
The EL SE on the second line does nothing, based on the most recent $TEST
operation.

The subroutine MODIFY does modify $TEST, and when it exits STEST equals 0.
The EL SE on the second line sends 'Greater' to the output window, based on the
most recent $TEST operation.

Clearly this situation contains the potential for unexpected results. The examples
in this section present a specific solution to this problem based on argumentless
DO.

In EsiObjects, GOTO is primarily useful for delegation; otherwise, the use of
GOTO isdiscouraged. Inside a block, the GOTO command isillegal unlessit
accesses another line in the same body of code and that line's level isthe same as
the current execution level. The line accessed by GOTO need not be connected to
the current block. The examples in this section show how to avoid GOTO in
blocks.

Keep the following points in mind when you use argumentless DO blocks:

Execution skips past any lines of code that are at too high alevel. If EsiObjects
encounterslines at ahigher level than the current execution level, it skips past
those lines. Accidental failure to place an argumentless DO on the line before a
block or subblock causes the block of code to be skipped.

Execution quits when aline is encountered at too low alevel. Therefore, an
implied QUIT occurs automatically at the end of ablock and it is not necessary to
place an explicit QUIT on thelast line of the block. A comment line inside a block
must begin with the appropriate number of periods, or it causes an implied QUIT
to occur and the rest of the block isignored. If a deeper block does not begin on
the line immediately following an argumentless DO, then an implied QUIT
immediately occurs.

Commands 67

Keep the following points in mind when passing parameters with the DO command (DO
LABELM"ROUTINE(...)):

» With pass by value, only asingle value is sent along to the formal variable. Its
$DATA value istherefore guaranteed to equal 1. If an attempt is made to specify
an undefined variable in the actual parameter list, then an error occurs.

» With pass by reference, the formal variable becomes an dlias for the actual
variable. Both symbols must be local variables. If the actual variable is not
defined, the formal variableis also undefined and its $DATA valueisO. If the
actual variableisalocal array, the formal variable is an identical array having the
$DATA value 10 or 11.

o |If theformal parameter list islonger than the actual parameter list, the omitted
formal parameters are undefined, and has $DATA values of 0. If the actua
parameter list islonger than the formal list, then an error occurs.

When passing parameters with DO obj ect.service(...)and a method parameter list is
specified, there are two kinds of parameters. keyword (having the format
keyword:expression) and positional (having the format expression). After the first
keyword parameter is specified, al remaining parameters must be keyword parameters.

Related
M essage Syntax

Method structure
GOTO command
QUIT command
$TEST specia variable
Examples

Note that in some cases DO does not stack $TEST and that $TEST islikely to change
between the | F and the EL SE. The following exampleillustrates atypical programming
error.

| F | 9%ei ght' >l 9W dt h DO TEST
ELSE DO $Env. Qut put ("Greater")

QT
TEST ; Subroutine containing | F and ELSE
| F | %ei ght =I %W dt h DO $Env. Qut put (" Equal ")

ELSE DO $Env. Qut put ("Not Greater™)
QT

Commands 68

Assuming that 1%Height=5 and 1%Width=10, the | F command on the first line sets
$TEST to 1 and the DO calls TEST. Inside TEST, the | F sets $TEST to 0, and the

EL SE executes the environments Output method. The QUIT then exits TEST. The

EL SE on the second line checks $STEST (which is now 0) and executes the environments
Output method. Thefirst line of output is"Not Greater" and the second line is " Greater".
Thisis probably not what the programmer intended.

A number of language elements (for example, object-with-service references, extrinsic
functions, and the argumentless DO) place $TEST on the process stack. The following
exampl e solves the problem shown in the previous example with the argumentless DO:

| F 19%ei ght' >l %W dth DO

. | F 1%ei ght =1 %W dt h DO $Env. Qut put ("Equal ") QU T
. DO $Env. Qut put ("Not Greater")

ELSE DO $Env. Qut put ("G eater")

QT

When passing parameters by value with the syntax DO LABEL"ROUTINE(...),
remember that only a single value can be passed in. The symbol in the formal parameter
list takes on the value specified by the expression in the actual parameter list.

DO MODI FY(T%Chi | d, T%Chi | dHei ght +25, T%Chi | dW dt h+50, 200, 300)
DO MODI FY(T9%ar ent , T%Par ent Hei ght , T%ar ent W dt h)

QT

MODI FY(L% bj ect, L%Hei ght, LYW dt h, L%, L%Y) ; Modify size/position
I F $CET(L9%) ' ="" SET L%Mj ect. X=LW
I F $GET(L%Y) ' ="" SET L%bject. Y=L

SET LY%bj ect . Hei ght =L%ei ght
SET L9%bj ect . W dt h=L9W dt h
QT

In pass by reference, the formal variable becomes an alias for the actual variable until the
subroutine exits, when the formal variable is restored to its previous state. In the
following example, a subroutine SWAP is called three times to exchange the val ues of
three pairs of local variables. Note that the variables L%Temp and L%First in the calling
code are never confused with L%First and L%Temp in the subroutine.

DO SWAP(. L%hird, . L%irst)
DO SWAP(. L%, . L%Tenp)
DO SWAP(. L9 dt h, . L%ei ght)
QIT
SWAP(L%-i rst, L¥%econd) ; Exchange val ues of two | ocal variables
NEW L% enp
SET L% Tenp=L%i rst, L% i r st =L%Second, L%Second=L%enp
QT

Commands 69

The following two statements are equivalent. Both access the method Update,
implemented within the same method at the superclass.

DO $SUPER. Updat e
DO $SELF. *Updat e

DO Command - Parameters

A DO label™routine reference with parameters accepts two forms of parameter passing
(pass by reference and pass by value).

The following terms are useful when discussing parameter passing:

Term Description

Actual parameter list The parameter list specified on a DO command (or extrinsic
function call), specifying the actual values to be associated with
each parameter variable.

Formal parameter list The parameter list specified on a subroutine or function's initial
label line, formally specifying the local variable names to be used
for each parameter.

Pass by value The parameter is any expression. Its value is assigned to the local
variable named in the formal parameter list. Nothing that happens
to the formal variable in the parameter list has any effect on the
actual parameter.

Pass by reference The actual parameter is a local variable name preceded by a
period. In the subroutine, the formal variable temporarily becomes
an alias for this local variable. Therefore, changes to the formal
variable are immediately reflected in the actual variable.

DO Command - Argumentless

When the argumentless DO is encountered, EsiObjects does the following:

* Addsanew frame to the process stack and records the current execution location,
execution level, and $TEST value.

» Adds 1 to the current execution level (the number of periodsit expectsto find after
the line start indicator on each line of code it encounters).

* Transfers control to the next line of code.

The execution level (EL) initially begins at 0. Only the argumentless DO command
increases the execution level. Other code cals (XECUTE, object-with-service
references, the other forms of DO, and extrinsic functions) place the EL on the stack but
set it to O internally. Each line of code hasits own level (thelinelevel (LL)), which refers
to the number of periods following the line-start indicator.

Commands 70

Whenever EsiObjects encounters aline of code, its behavior is based on a comparison of
these two values as follows:

» If LL>EL, skip thisline and go on to the next line of code.
o |If LL=EL, executethisline of code before going on.

o If LL<EL, issueaQUIT, remove the top frame from the process stack, and restore
the state recorded on that frame.

The practical implications of these rules are summarized in the Comments discussion.
DO Command - Callbacks

The format for a callback is as follows:

DO <chref>[(cbactlist)]

where:

cbref

Is an expratom V as a callback frame ID string

cbactlist

Isalist of parameters to be passed positionally through the callback by value.

The $CALLBACK function returns a callback frameidentifier used in calling back to a
label or public label in the current method. A method uses this function to create such an
identifier, which is then passed to an external object. The external object can then call the
label directly without incurring the overhead of afull-blown method call. The callback
runs in the context to the object that created the callback.

Original callbacks are the most common callbacks used. They dispatch directly to the
actual EsiObjects method stack frame that created the callback. (Note that the EsiObjects
method stack is not the same as the underlying M process stack.) The callback is
automatically freed when the stack frame exits, so the callback can only be made from
methods called before that stack frame has exited.

Capture callbacks record the callback creator's method-related variables. If the callback
is additive, then changes to those variables are preserved between calls. If it isnot
additive, then the variables are always reset to their values at the time the call was made.
If the callback is persistent, then it survives for the lifetime of the creating object, or until
it isexplicitly freed with the SFREECB function.

Initialized callbacks are used internally as the backbone of events and watches. The
callback starts with an entirely clean variable context. However, if it is additive, then any
changes to those variables are carried over to succeeding callbacks.

The creator of acallback is usually considered to be its owner. Only the owner should
free the callback. The lifetime of a callback never extends beyond the lifetime of the

Commands 71

creating object. If the object dies, the callback is automatically freed. Original callbacks
continue to exist until the creating stack frame terminates, when they are automatically
freed. Nonpersistent callbacks are freed whenever the incarnation of SENVIRONMENT
changes (in other words, whenever EsiObjects is shut down or restarted). In general,
Capture and Initialized callbacks should be explicitly freed with $SFREECB when their
usefulness has ended.

Commands 72

All methods that create callbacks or call them should clearly document the callback
interface they assume. The documentation includes the following information:

* Thenumber of parameters, if any

* The purpose and use of each parameter

* Whether the callback is to be made as a subroutine or extrinsic function
» The expectations of callback ownership

Note that the validity of callback parametersis determined only at run time. This adds to
the importance of adequate documentation.

Commands 73

ELSE

The EL SE command causes the remaining statements on the line to be executed if
$TEST isO, or to beignored if STEST is 1.

Format

E{LSE} SP

Explanation

The EL SE command, like I F and FOR, has aline scope. This means that it
conditionalizes the execution of al the remaining commands on the line.

» If thevalue of $TEST is 1 when EL SE is encountered, then all the remaining
commands on the line are ignored and execution proceeds to the next line of code.

e |f thevalue of $TEST is0 when EL SE is encountered, then execution continues
on to the remaining commands on the line.

The $TEST special variableis affected by the | F and DESTROY commands and any
time atimeout is encountered. Other conditional operations, such as postconditionals and
$SELECT, do not affect $TEST. The EL SE command does not modify the value of
$TEST.

Comments
Keep the following points in mind when you use the EL SE command:
» Because EL SE isaways argumentless, at least two spaces must separate it from
anything else on the same line.

* EL SE does not allow a postconditional. The two other commands with line scope,
|F and FOR, also do not allow postconditionals.

* Because adl commands conditionalized by EL SE must fit on asingle line,
argumentless DO is sometimes used in the scope of EL SE to extend its reach
beyond asingleline.

Related

|F command

DO command
$SELECT function
$TEST specia variable

Examples

It is extremely rare to have an EL SE command on the samelineasan I F. Thisis because
|F sets $TEST to 1if it executes the rest of the line, and EL SE prevents execution unless
$TEST is0. The following exampleis clearly a mistake:

| F | %ei ght>] %W dt h DO $Env. Qut put ("G eater") ELSE DO $Env. Qut put (" Not
G eater")

Commands 74

If 1%Height is not greater than 1%Width, the | F sets $TEST to 0 and transfer execution
to the next line. Nothing after the EL SE command is ever encountered. By contrast, the
following example works properly:

| F 19%ei ght > 9WW dt h DO $Env. Qut put ("Greater")
ELSE DO $Env. Qut put ("Not Greater")

It can be valid to put EL SE on the same line as | F in those rare cases where something
happens between | F and EL SE to change $TEST, such as atimeout or aDESTROY
command.

| F T%Renove DESTROY T%bj ect 12 ELSE DO $Env. CQut put (" Cbj ect not destroyed.")
QIT

In the previous example, if the service variable T%Remove does not contain atrue value,
the entirerest of thelineisignored. But if T%Removeistrue, the DESTROY command
isinvoked to remove the object whose object referenceisin T%Object12. If the object is
destroyed successfully, then $TEST is 1 and everything after the EL SE isignored. But if
DESTROY failsto destroy the object, $TEST is set to 1 and the EL SE lets execution
pass on to the environments output window and QUIT.

Commands 75

EVENT

The EVENT command triggers an event that can be handled by any concerned objects.
Format

EV{ENT} postcond SP L earg

postcond ::={ : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.

eventname {(L expr)}

earg ::= $PROPERTIES
propertyname {(L expr)}
@ expratom V L earg

Explanation
The following expression values are to be used for property events:

Value Meaning
"PRESET" The property is about to be set.
"SET" The property's value has just been assigned (interested objects

can query the property for its current value).
"SETREJECT" The assignment has been rejected by setting $Return to zero

(false).
"PREKILL" The property is about to be killed.
"KILL" The property has just been killed.

"KILLREJECT The kill has been rejected by setting $Return to zero (false).

"DEAD" The object implementing the property has just died (interested
objects can no longer refer to the property.)

See the examples section below for more details.

If asingle event or property name is specified, parameters can be sent with the event. The
$PROPERTIES specia name contains alist of all properties of the triggering object.
Event delivery is asynchronous. The order in which events are delivered to a given object
is guaranteed, but the timing of eventsis not.

Comments
Keep the following points in mind when you use the EVENT command:
» If aconcerned object isinterested in watching for al properties to change, the only

way to trigger an event for that object iswith EVENT $PROPERTIES.
Individually triggering events for each property does not have this effect.

» If aconcerned object is watching $SPROPERTIES and a single property, it is
informed twice when an event for that property is triggered.

Commands 76

* Thelabel used to handle an event must be public. It must be able to handle at least
two parameters:

- OBJECT - An object reference to the watched object.

- MESSAGE - The name of the event or property that was triggered by the
EVENT command.

* However, many events send additional parameters, and the handler's formal
parameter list must not declare fewer parameters than are sent with the event.

» Properties generaly initiate an event when they are assigned or killed. Thisisthe
main case when property events occur.
Related

Method structure

IGNORE command

WATCH command

Examples

The following example triggers the Renamed event for any concerned objects.

EVENT Renaned(T% dNane, TYNewNane)

The following example triggers a property event, indicating that the Name property has
been set.

EVENT Name(" SET")

The following example triggers an event for concerned objects watching all properties of
the current object and triggers a separate event for the individual properties being
watched by concerned objects.

EVENT $PROPERTI ES

Commands 77

The FOR command causes the remaining statements on the line to be executed
repeatedly.
Format
H OR} SP{lvn =L forparameter}

Forparameter ::= expr

numexprl: numexprl {: numexprl}

where:

Expr is an explicit string or numeric value for the variable during

a single iteration of the loop

numexprl is the numeric starting value of the variable during the first

loop iteration

numexpr2 is the numeric incremental value to be added to the

variable before each loop iteration other than the first

numexpr3 is the numeric boundary value that must not be crossed

by the variable

Explanation

The FOR command, like I F and EL SE, has aline scope. This means that it iterates the
execution of all the remaining commands on the line. Note the following:

For each forparameter, the variable's value is either incremented through arange
of values or set to the single explicit value of that forparameter.

Execution of aFOR loop terminates when the variable's value is already beyond
the boundary value (in the direction indicated by the sign of the incremental
value), or when adding the increment to the variable would cause it to cross that
boundary.

If more than one forparameter is specified, they are processed in order from left to
right.

Execution of aQUIT command terminates the innermost FOR loop, causing al
remaining forparameters in that loop to be skipped.

Execution of aGOTO command in the scope of a FOR loop terminates all the
loops on that line, from the innermost to the outermost.

Once the FOR loop has started executing, changes to the looping variable can
have an impact on the number of iterations. However, changes to any variables
originally used to specify the starting, incrementing, and ending values cannot
affect the number of iterations.

The argumentless FOR command does not specify any variable to iterate. Thisisthe
most flexible type of FOR loop, and possibly the most common. Two spaces must
separate the argumentless FOR command from anything else on the line. Iteration

Commands 78

continues until aQUIT or GOTO in the scope of the FOR command terminates the
loop. If no QUIT or GOTO is executed, an infinite loop results.

The FOR command does not allow argument indirection. The following isillegal:

SET T% |1 egal =" X=1:1: 10"
FOR @% |1 egal DO $Env. Qut put (T%)

However, you can use the XECUTE command to achieve the desired results as follows:
SET T%.0op="X=1: 1: 10"

XECUTE "FOR " _T%.oop_" DO $Env. Qut put (T9%X) "
Comments

Keep the following points in mind when you use the FOR command:
* If FOR isargumentless, at least two spaces must separate it from anything else on
the sameline.

* FOR doesnot allow a postconditional. The two other commands with line scope,
|F and EL SE, also do not alow postconditionals.

» Because all the commands iterated by FOR must fit on asingle line, argumentless
DO is sometimes used in the scope of FOR to extend its reach beyond asingle
line.

Related

DO command

GOTO command

QUIT command

Examples

The following example shows a simple FOR loop:

SET T%string=""

FOR T%.oop=1:1:10 SET T%Stri ng=T¥%Stri ng_T%oop_" "

Results: 1234567 89 10
The following example illustrates multiple forparameters. Note that the QUIT command
terminates during the third forparameter, causing the fourth forparameter to be skipped:
SET TuString=""
FOR T%0op="Hel | 0", 50: - 7: 20, 444, 100: 222 QUI T: T%.00p>300 DO
. S TYString=T¥string_T%oop_" "

Results: Hello 50 43 36 29 22 444

Commands 79

The following example illustrates the repeated use of incremental 1ock with atimeout to
provide feedback to the user that an attempt to lock the node is in progress. After 30
seconds, the FOR loop gives up and the process is abandoned.

DO $Env. Qut put (" Locki ng")

FOR T%.oop=1:1:10 DO $Env. Qutput (".") LOCK +*XYZ(0):3 IF QU T
ELSE DO $Env. Qut put ("Node is busy. Aborting.") QUT

SET (T%Ent r yNunber , AXYZ(0)) =~ XYZ(0) +1

LOCK -19%.i st (0)

SET AXYZ(T%Ent r yNunmber) =T%Ent r yVal ue

The following example attempts to open a device for up to 30 seconds before it gives up.
If the operation is successful, the following occurs:

* Anargumentless FOR loop reads lines of text from afile whoseidentifier isin the
variable T%File.

* Thelinesthat are read are echoed to the principal device (SPRINCIPAL) until a
blank line is encountered.

e Thefileisclosed.

DO $Env. Qut put (" Opening Device "_T%-i |l e)
FOR T%.oop=1:1:10 DO $Env. Qutput(".") OPEN T%ile::3 IF QUT
ELSE DO $Env. Qut put ("Device ", T%ile," is unavailable.") QUT
FOR DO QUIT: T%ine=""
. USE T%ile
. READ T%.i ne
IF T%.ine="" QUT
. USE $PRI NCI PAL
. WRITE T%.i ne, !
CLCSE T9%i |l e
QIT

The following example, the WALK subroutine, traverses al the descendants of the
specified array node, displaying the nodes and their values on the environment output
window. It uses a FOR loop with $ORDER to traverse the nodes, $DATA to determine
whether a given node contains data, and $SNAM E to convert a subnode into a name value.
This name value is then used in name indirection, as the argument of $DATA, and is
passed as a parameter.

WALK(Node) ; Recursive traversal

NEW Sub, Dat aVal , NodeNane

| F $DATA(@Node) #10 DO $Env. Qut put (Node_" =<"_@Node_">")

SET Sub=""

FOR SET Sub=$ORDER(@Node@ Sub)) QUI T: Sub="" DO

. SET NodeNarme=$NAME(@ode@ Sub))

. SET Dat aVal =$DATA(@odeNane)
| F DataVal ' [0 DO $Env. CQut put (NodeNarme_" =<"_@\Node_">")
| F Dat aVal >9 DO WALK(NodeNane)

QT

Commands 80

The following example provides an alternative implementation of WALK. It uses
$DATA to display the root node if necessary, uses SLENGTH and $EXTRACT to build
an array root, a FOR loop with $QUERY to traverse the array, and $SEXTRACT to
determine the exiting condition. Inside the FOR loop there is only a single instance of
indirection with no recursive call.

WALK(Node) ; Nonrecursive traversal
NEW Root , Len
| F 11[$DATA(@Node) DO $Env. Qut put (Node_" =<"_@\ode_">")
SET Len=$LENGTH(Node), Root =Node
| F $EXTRACT(Root , Len) =")" SET $EXTRACT(Root, Len)=","
ELSE SET Root=Root " (", Len=Len+1
FOR S Node=$QUERY(@Node) Q $EXTRACT(Node, 1, Len)' =Root DO
. DO $Env. Qut put (Node_" =<"_@\ode_">")
QT

Commands 81

GOTO

The GOTO command transfers control to the specified execution location without
adding a frame to the process stack. Execution does not return to the point following the
GOTO.

Format
G{OTO} postcond SP L gotoargument

postcond ::={ : tvexpr }

txexpr evaluates to a truth-valued expression. Execution of the command is conditional
based on the truth-value of this expression.

gotoargument

Can be one of the following:

dlabel {+offset} {*routineref} postcond
~routineref

object.service

@ expratom V L gotoargument

Explanation

The primary use of GOTO in EsiObjectsisfor delegation to another object and/or
service. In delegation, the current method uses GOT O to make an object-with-service
call that does not return to the current execution context. The return value of the
delegated serviceistreated as the return value of the calling code body.

GOTO can be used in other contexts such as subroutines and extrinsic functions, but its
general-purpose use is not recommended. GOTO isillegal inside ablock unlessit
accesses another line in the same code body and that line's execution level isthe same as
the execution level of the line containing the GOTO.

GOTO has asgpecia function inside the scope of the FOR command. It transfers control
at the current stack level, terminating execution of the FOR loop. An alternative isto
terminate the loop with QUI T, transferring control externally.

Like DO and XECUTE, GOTO alows a postconditional to be applied to the command,
or to any of its arguments. The following table summarizes the results when the
postconditional in either location istrue or false.

Result Postconditional on Postconditional on
Command Argument
True Execute the command and Execute that argument, never
its arguments. returning to process any
additional arguments.
False Skip the command and all ~ Skip that argument and go on
its arguments. to the next argument or

command.

Commands 82

Callbacks
The format for acallback is as follows;

GOTO <cbref>

where:

cbref evaluates to an expratom V as a callback frame ID string.
For example:

GOTO <T%Revector>

GOTO <T%Error>

Control istransferred to the callback. The callback must not require any parameters.
Comments

Keep the following points in mind when you use the GOTO command:

* In EsObjectsthe GOTO command, though legal, is not recommended for general
use except in cases of delegation. Thereis no task in EsiObjects that requires the
use of GOTO.

» Some programmers are reluctant to use GOTO in any context, but in EsiObjects it
is an important tool when explicit delegation is called for.
Related

Message Syntax
Method structure
DO command
FOR command

XECUTE commandExamples

In the following example, the object delegates the current task to its parent object, whose
handle isin the instance variable 1%Parent. The return value of the called service
Shutdown becomes the return value of the current method doing the del egation.

GOTO | %ar ent . Shut down(TSt at us)

Commands 83

HALT

The HALT command ends the M session.
Format

H{ALT} postcond
Parameters

postcond ::={ : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.

Explanation

An unconditional HALT exits from the M session. It unlocks al local and global nodes
that were locked and closes all devices that you own. A processis deleted if it was started
with the JOB command. Otherwise, the process remains active. All unshared objects
cease to exist.

TheHALT command has no effect when executed within the EsiObjects Xecute Shell.
Related

CLOSE command
HANG command
LOCK command

QUIT command

Commands 84

HANG

The HANG command suspends execution for the specified number of seconds.
Format

H{ ANG} postcond SP L hangargument
Parameters

postcond ::={ : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.

hangargument

Can be one of the following:

numexpr
@ expratom V L hangargument

where;

numexpr is the number of seconds for which execution is
suspended (This expression’'s numeric interpretation is
used.)

Explanation

The HANG command suspends execution for the specified number of seconds. If the
hang value is O or less, execution is not suspended.

Comments
Keep the following points in mind when you use the HANG command:
» Theabbreviation H also appliesto the HALT command, which is always
argumentless. Therefore, the following statement isinterpreted asHANG 5:
H5

» Some underlying platforms round fractional values down to the nearest integer.
Decimal precision can vary on these platforms that do support fractional amounts.

* The pause between HANG operations can be dlightly longer than the number of
seconds specified.
Related

HALT command
Examples

The following example illustrates the conventional use of the HANG command to pause
execution for an integer number of seconds (one second in this case).

FOR T%.oop=1: 1: 10 DO $Env. Cut put (T%.oop) HANG 1

Commands 85

In the following example, execution pauses for 0.25 seconds between WRITE
operations. Some underlying M platforms round fractional amounts down to the nearest
integer (O inthis case). If the underlying M platform does not support fractional
arguments, NO SUSPeNsion OCcurs.

FOR T%.oop=1: 1: 10 DO $Env. CQut put (T%.0op) HANG 0. 25

Commands 86

1=

The | F command executes or ignores the remaining statements on the line based on the
true or false value of some conditions.

Format

I{F} SP{L ifargument}
ifargument

Can be one of the following:

tvexpr
@ expratom V L argument

where;

Tvexpr is an expression whose value is interpreted as either true
or false

Explanation

The | F command with defined with no arguments is the opposite of the EL SE command.
Argumentless | F lets execution pass to the rest of the commands on the line only if
$TEST is 1. Thisformismost commonly used after language elements (other than | F)
that modify $TEST, such as timeouts or the DESTROY command.

With one or more arguments, | F begins to evaluate each of its arguments from left to
right astrue or false. If atrue argument is encountered, | F sets STEST to 1 and execution
continues with the rest of the line (including any remaining | F arguments). If afalse
argument is encountered, $TEST is set to 0 and the rest of the line (including any
remaining | F arguments) is skipped.

Comments

Keep the following pointsin mind when you use the | F command:

* |F doesnot allow apostconditional. The two other commands with line scope,
EL SE and FOR, aso do not allow postconditionals.

» Because all the commands conditionalized by | F must fit on asingleline,
argumentless DO is sometimes used in the scope of | F to extend its reach beyond
asingleline.

* The$TEST specia variable is affected by the | F and DESTROY commands and
any time atimeout is encountered. Other conditional operations, such as
postconditionals and $SEL ECT, do not affect STEST.

Related

DO command

EL SE command

Commands 87

$SELECT function

$TEST specia variable
Examples

In the following example, the WRITE and QUIT commands are performed only if
DESTROY set $TEST to 1 (in other words, the object was successfully destroyed).

DESTROY T%bj ect 12
| F DO $Env. Qut put ("nj ect was destroyed.") QU T

In the following example, the single-argument | F command can be used with the AND
(&) operator to perform some commands only if one or more conditions are true:

I F X>Y& X>Z) DO $Env. Qutput ("X is higher than Y or Z.")

The multiple-argument | F command is usually equivalent to the use of AND. For
example, the following line of code is equivalent to the preceding example.

I F X>Y, X>Z DO $Env. Qutput ("X i s higher than Y or Z.")

The multiple-argument | F does not examine any arguments after the first false one. In
some cases it runs faster than the and (&) form shown previously, and in some casesits
behavior is distinct (in other words, the ignored arguments have side-effects such as
changing the naked indicator, calling extrinsic functions, invoking object methods,
properties, accessors, and so on).

For example, the following line of code always invokes the $Order accessor of the
property Element(T%L oop) of object T%Window, which could have functional side
effects, even if thefirst part of the condition T%Window.Size>300 isfalse:

| F TOA ndow. Si ze>300&($ORDER(T9N ndow. El enent (T%.0op))’ ="") DO
$Env. Qut put ("Not finished.")

The previous code is not functionally equivalent to the following line of code because the
second IF argument is not encountered if the first argument is not true:

| F T9W ndow. Si ze>300, $ORDER(T9W ndow. El ement (T%.oo0p)) ' ="" DO $Env. Qut put (" Not
finished.")

Commands 88

IGNORE

The IGNORE command specifies that one or more events are to be ignored for one or
more objects.

Format
IG{NORE} postcond SP{L iarg}

postcond ::={ : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.

iarg ::= target {.eleref}
@ expratom V L iarg

eleref ::= lelem
(L ielem)
ielem ::= Rielem
@ expratom V rielem
rielem ::= $PROPERTIES
$EVENTS
event
property
Explanation

The argumentless form specifies that the object in whose context it executesis no longer
concerned about any events or properties for any objects.

The target, if specified, indicates an object for which events are to be ignored. If only the
target is specified, then all events and properties are ignored for that object.

It is possible to ignore specific events or properties by naming them, to ignore all events
by specifying the special name (not a special variable) SEVENTS, or to ignore all
properties by specifying the specia name $PROPERTIES.

Comments
Keep the following pointsin mind when you use the I GNORE command:

» If aconcerned object wants to watch all events except for one about the watched
object, it is not possible to use WATCH $EVENT S and then use IGNORE to
ignore the specific event. Instead, it is necessary to specifically watch those events
about which the object is concerned.

» The concerned object detaches itself from the watched object using the I GNORE
command. There is no detachment mechanism for the watched object to disassoci-
ate itself with one or more concerned objects, but the watched object can choose
not to generate some or all events.

» If theignored object has used the SW ATCHDETECT function, it can be
informed of the fact that it is being ignored.

Commands 89

Related
EVENT command

WATCH command

SWATCHDETECT function
Examples

The following example causes the current object to ignore al events and properties.

| GNORE

The following example causes the current object to ignore al events and properties for
the object T%Object12.

| GNORE T%bj ect 12

The following example causes the current object to ignore all events for the object
T%Object12.

| GNORE T%bj ect 12. $EVENTS

The following example causes the current object to ignore all properties for the object
T%Object12.

| GNORE T%bj ect 12. $PROPERTI ES

The following example causes the current object to ignore the Renamed event for the
object T%Object12.

| GNORE T%bj ect 12. Renaned

The following example causes the current object to ignore the Renamed and
ObjectDeleted events for the object T%Object12.

| GNORE T%bj ect 12. (Renanmed, Obj ect Del et ed)

Commands 90

JOB

The JOB command calls abody of code to be executed in the context of a separate,
newly created process.

Format
J OB} postcond SP L jobargument

postcond ::={ : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.

dlabel {+offset} {*routineref}
jobargument ::= Aroutineref {: jobparameters}
label {*rname} (L expr)
Arname (L expr)
@expratom V L jobargument

Explanation

Execution of the current process continuesin parallel. When the called code terminates,
the new processis aso terminated.

At some point, afina QUIT command occursin the called code, removing the last
remaining frame from the process stack. When the called code terminates, the new
process also terminates.

An actual parameter list can be specified with the JOB command. The rules are the same
as for parameter passing on the DO command, except that the new process has its own
local variable table and pass by reference is not allowed. Parameters can only be passed
by value.

Specia job parameters, determined by the underlying M platform, optionally can be
specified. These affect the creation of the new process. Examples might include setting
the priority of the job or setting the total amount of local variable memory.

In some cases, the system may not have enough slots or memory available to create a
new process. The calling process suspends execution until the new process can be
created. It is possible to specify atimeout on the JOB command, in which case the
attempt to create a new job aborts after the specified number of seconds. Whenever a
timeout is specified, $TEST isaways equal to 1 if the operation succeeded, or O if it
times out.

Commands 91

Comments
Keep the following points in mind when passing parameters with the JOB command
(JOB LABEL~ROUTINE(...)):

* Only pass by value can be used when passing parameters. Only asinglevalueis
sent to the formal variable. Therefore, its $DATA value is guaranteed to be 1. If an
attempt is made to specify an undefined variable in the actual parameter list, then
an error occurs.

» Thereisnoway to passin aloca array. The only way to provide an array isto use
subscript indirection to pass a pointer to a global array to be accessed by the job.

o If theforma parameter list islonger than the actual parameter list, the omitted
formal parameters are undefined and have $DATA values of 0. If the actual
parameter list islonger than the formal list, then an error occurs.

Related

DO command
QUIT command
$JOB special variable

$TEST specia variable
Examples

The following example creates a new job with a call to the label START in the routine
PQUEUE.

JOB START"PQUEUE

The following example shows how to use JOB with a parameter list to specify important
values for the newly created process.

JOB STARTMPQUEUE(TYFi l e, | 9rinter)

Commands 92

KILL

The KILL command destroys a variable or an array node and all its descendants.
Format

K{ILL} postcond SP {L killargument}

postcond ::={ : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.

killargument

Can be one of the following:

glvn

(L local)

object . property

@ expratom V L argument

where:
glvn is a global or local variable name or array node included in
the Kkill
local is a local variable name to be excluded from the Kkill
object is the object reference of an object
property is the name of a property to be killed for that object
Explanation

There are three forms of the KILL command:

* Inclusive - Removes the specified variable names, array nodes, or both. If the
target has descendant array nodes, these are also removed. Thisis the most
common form and the one most consistent with the paradigm of EsiObjects.

» Exclusive - Removesall local (L%) variables except those enclosed in
parentheses. Use of the exclusive form is discouraged.

* Argumentless - Removes all local (L%) variables. Not currently supported in
EsObjects.

When avariable or array node iskilled, all descendant array nodes are also removed, for
example:
KILL AMYGLO(22, 1)

When the argument of KILL isof the form object.property, the Kill accessor for that
property is automatically invoked in an attempt to kill the property. Thisis amethod in
whose context the SRETURN specia variable's value equals 1 by default. If the method

Commands 93

returns 1 or any other true value, an event is triggered by the dispatch mechanism. If the
method returns a 0, it means that the property was not killed and no event is triggered.

Handlers of the event automatically triggered by a successful return of the Kill accessor
must accept four parameters in their formal parameter list. These parameters are
described in the following table.

Parameter Description

Object The object reference of the object containing
the property.

Property The full property name, of the form
interface::name.

Callframe Object An object that can optionally be used to inquire
into the parameters that were passed in.

Operation SET or KILL commands.

Comments

Keep the following pointsin mind when you use the KILL command:

» Killing ahandle to an object does not destroy the object. Use the DESTROY
command instead.

* Only locd variable names are alowed inside the parentheses of an exclusive
KILL command. Local array nodes are not allowed.

* Thereisnever aneed to use the exclusive and argumentless forms of KILL in
EsiObjects. Local (L%) variables can be made temporary by using the NEW
command. They automatically are destroyed when aQUI T occurs at the same
stack frame level. Accessor (T%) variables can be used in place of local variables,
causing them to be scoped within a single code body.

* Anytimeavariable or array node iskilled, all descendant array nodes are also
removed. If the target did not exist in the first place, KILL has no effect.
Therefore, using the $DATA function on a symbol immediately after aKILL
command has been applied to it always yields the return value O.

Related

DESTROY command

NEW command
Examples
The following example uses the KILL command to explicitly destroy the instance
variables [%Height and 1%Width.

KILL 198 tle, | 9%ame
The following example kills the symbol T%Customer, a handle to a window object. It has
no effect on the object referenced by that handle.

KI LL T%Cust oner

Commands 94

The following example uses DESTROY, instead of KILL, which attemptsto kill the
symbol T%Employee and destroy the object it references. Afterwards, argumentless|F is
used to test the results of the DESTROY operation. If $TEST istrue, it means that the
object was destroyed and T%Employee was killed. Note that unlike KILL, the
DESTROY command does not kill any descendant array nodes of T%Employee.

DESTROY T%Enpl oyee
ELSE DO $Env. CQut put ("Warni ng: "_T%Enpl oyee. Nane_" not destroyed.") Q

Killing a property invokes the Kill accessor. For example, the following code invokes the
Kill accessor for the Visit property of the object T%Object12.

KILL T%bj ect 12. Vi si t ($HOROLOG, T xnum

Assuming that this method is able to successfully accomplish itstask, it returns some true
value such as 1. In that case, an event istriggered. This event includes the following
parameters:

* Object

* Full property name
» Cadlframe object

* Operation

The following code can be used to handle this event. If the SHOROL OG value specified
in the first parameter indicates today's date, the handler exits. Otherwise, it gets the
remaining parameters and calls the LOG subroutine to make note of the event.

HANDLE(T%bj ect , T%r operty, TUCFO, T%per) ; Handl e assign/kill
| F +(TY%CFO. Paraneter (1)) =+$HOROLOG QUIT ; Exit if it is today
SET TW/al ue=T%CFO. Par anet er (2)
DO LOE TW/al ue, T% per)
QIT

Commands 95

LOCK

The LOCK command provides a convention whereby concurrent processes can avoid
conflicts caused by simultaneous attempts to update the same variable.

Format
L{OCK} postcond SP{L lockargument}

postcond ::={ : tvexpr }

tvexpr evaluates to a truth-valued expression. Execution of the command is conditional
based on the truth of this expression.

+ nref
lockargument ::= - (L nref) {: timeout}
@ expratom V L lockargument

The syntax element nref is aname reference, frequently the name of a global array node.
Name indirection is allowed.

Explanation

The LOCK command is atool for establishing conventions where concurrently

executing processes can avoid coming into conflict when they attempt to modify the
same data. L OCK makes an entry in a system lock table, preventing other processes from
locking the same data until it is unlocked. LOCK does not prevent other processes from
modifying or destroying data; it only prevents them from locking the same data. As such,
it provides no guarantee that other processes are not coming into conflict with the locked
data.

When anameislocked, an entry for that name is made in the lock table. This entry
prevents other processes from locking the same name or any ancestor or descendant of
that name.

There are severa different forms of the LOCK command. Use only the incremental and
decremental forms in EsiObjects. The older forms of L OCK can violate object
encapsulation by affecting locks made internally by other objects.

e Incrementa - Incremental L OCK prefixes the name (or list of namesin
parentheses) with the plus (+) sign. It adds alock to each specified name without
removing any locks. If the locked nameis not already in the lock table for the
current process, it attempts to lock that name. If the current process already locks
the name, it adds 1 to the number of locks of that name.

» Decremental - Decremental L OCK prefixes the name (or list of namesin
parentheses) with the minus (-) sign. If alocked nameisin the lock table for the
current process, it decrements the number of locks for that name without affecting
other locks. When the number of locks of a name reaches 0, that name is unlocked.

* Argumentless - Argumentless L OCK removes all lock table entries for the current
process. It is not recommended for use in ESiObjects.

Commands 96

* Single-name - Single-name L OCK removes all lock table entries for the current
process before attempting to lock the specified name. It is not recommended for
use in EsiObjects.

e Multiple-name - Multiple-name LOCK is expressed as alist of names enclosed in
parentheses to lock. It removes all lock table entries for the current process before
attempting to lock these names, one after another, from left to right. It is not
recommended for use in EsiObjects.

Comments

Keep the following points in mind when you use the LOCK command:

* Only the incrementa and decremental forms of L OCK are recommended for use
in EsiObjects.

* LOCK can optionally include a timeout. When present, the timeout causes L OCK
to abort after waiting at least the specified number of seconds for the names to
become available. $TEST isset to 1 if all the specified names were successfully
locked, or to O if not all the locks were successfully completed. EL SE or
argumentless | F can be used to check whether the timeout period expired.

* Thereisnever any reason to use atimeout on a decremental lock.

* Notethat the following form of LOCK is dangerous. If the timeout period expires,
itisimpossible to tell which globals were locked and which were not. For
example, it is possible that ~X and Y were locked, but not *Z. Alternatively, none
of the globals may have been locked. This makes it impossible to know which
globals to decrementally unlock.

LOCK +(X, Y, "2): 3

» If each code body is responsible for incrementally locking and then decrementally
unlocking the names with which it is concerned, then it is easy to isolate locking
responsibility. A dangerous situation arises when subroutines, functions, and
especially object services begin to create aweb of lock dependencies.

Related

EL SE command

IF command
Examples

The following example illustrates the use of incremental and decremental lock to add a
new entry to alist in global ~XY Z. Thelist's last-entry pointer islocated at array node
AXY Z(0). The programmer who wrote this code has decided that this node is the only
place where processes come into conflict. For this reason the array node

AXY Z(T%EntryNumber) is not locked, though it would not be incorrect to do so.

The question of when to lock versus when not to lock is an important programming issue.
Also note that the incremental and decremental 1ocks have been placed as close together
as possible to minimize the length of time that other processes have to wait for *XY Z(0)
to become available.

Commands 97

LOCK +MXYZ(0)

SET (T%Ent r yNunber , ~XYZ(0)) =~ XYZ(0) +1
LOCK -19%.i st (0)

SET AXYZ(T%Ent r yNunber) =T%Ent r yVal ue

The following example is a modification of the previous example. It illustrates the
repeated use of incremental lock with atimeout to provide feedback to the user that an
attempt to lock the node isin progress. After 30 seconds, the process is abandoned.

DO $Env. Qut put (" Locki ng")

FOR T%.0op=1:1:10 DO $Env. Qutput (".") LOCK +*XYZ(0):3 IF QU T
ELSE DO $Env. Qut put ("Node is busy. Aborting.") QUT

SET (T%Ent ryNunber, ~XYZ(0))=~XYZ(0) +1

LOCK -19%.i st (0)

SET AXYZ(T%Ent r yNunber) =T%Ent r yVal ue

Commands 98

MERGE

The MERGE command performs a nondestructive array-copy operation, copying an
array node and al its descendants to a new location.

Format
M{ERGE} postcond SP L mergeargument

postcond ::={ : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.

mergeargument

Can be one of the following:

9Ivndest = 9IVNsource
@ expratom V L argument

where;

glvngest is the destination array node (The contents of the
source array node are copied into this location without
automatically destroying any information that may be
contained there or in descendant array nodes.)

glvngource is the source array node (The contents of this array
node are copied to the destination array subtree.)

Explanation

If array nodes already exist in the destination location, then those not explicitly
overwritten by source nodes are not affected. If the source location's $SDATA value is 0,
then MERGE has no effect. If its$DATA vaueis 1, then MERGE isidentical to SET.

An error resultsif the destination array is a subtree of the source array.

In the following example, note the starting state of the two arrays |%Elements and
T%Temp. In the following diagrams, filled circles represent array nodes containing
values (have $DATA values of 1 or 11) and open circles do not contain values (have
$DATA values of 10).

MVERGE T%lenp=I| %El enent s(22)
Following the M ERGE command, 1%Elements remains unchanged.
Comments

Keep the following points in mind when you use the M ERGE command:

» The MERGE command can copy alarge number of array nodes. However, it can
be expensive to execute and should not be used gratuitously. Note that MERGE is

Commands 99

much faster than copying al descendant array nodes with a FOR loop and
repeated SET commands.

» Some features of EsiObjects and the underlying M platform have not been
implemented fully. When certain SSVNs or logical object structures are copied
with MERGE, the destination array can contain only those nodes physically
present in the source structure at the moment the M ERGE operation occurs. Some
sparsely allocated information cannot show up in the destination array (this
behavior islikely to change in the future).

Related

KILL command

SET command
Examples

In the following example, the contents of the array T%SRC(22,17) are merged into
T%DEST. Therefore, if the node T%SRC(22,17,0) exists, it is copied into T%DEST (0),
and so on.

MERGE TYDEST=TYSRC(22, 17)
The following example guarantees that the destination array T%DEST("Name") is an
exact copy of the source array T%SRC("Info") by first killing the destination array.

KI LL TODEST(" Name")
MERGE TYDEST(" Name") =TUSRC(" | nf 0")

Commands 100

NEW

The NEW command preserves the states of certain local variablesto be restored when a
QUIT pops the current stack frame level.

Format
N{EW} postcond SP {L newargument}

postcond ::={ : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth of
this expression.

newargument

Can be one of the following:

local

(L local)

@ expratom V L newargument

where:

local is a local (L%) variable name (array nodes are not

allowed) whose current state is to be copied onto the
process stack

Explanation

There are three forms of the NEW command:

* Inclusive - The most common form and the one most consistent with the paradigm
of EsiObjects.

» Exclusive- A rare form of the NEW command whose use is discouraged. The
purpose of thisform isto remove all local (L%) variables except those enclosed in
parentheses. The only time to use this form is when calling volatile externa M
code that islikely to use the exclusive KIL L command, or to otherwise
accidentally interfere with internal symbols required by EsiObjects.

* Argumentless - Not currently supported in EsiObjects, the purpose of the
argumentless NEW isto remove al local (L%) variables.

Commands 101

The NEW command preserves the state of one or more local variables by copying them
onto the stack so they can be restored later. When the NEW command acts on alocal
variable, it is as though the following actions were performed:

- 1 An entry was made on the top frame of the process stack, recording the
name of the local variable.

e 2. If the variable exists, its current value (and the values of all descendant
array nodes) is copied onto the top frame of the process stack.

« 3. Thevariableiskilled.

For all local variablesto be restored, when QUIT terminates execution at the current
stack frame level before returning to the calling code context, it checks the top stack
frameto seeif their values (and the values of any descendant array nodes) are recorded
there. If the values are recorded, then these values are restored.

If the NEW command operates on an undefined variable, that variable'svalueis
undefined again after the QUIT, regardless of any operations that have been performed
onit in between.

Comments
Keep the following points in mind when you use the NEW command:

* When aNEW command is encountered, some underlying M platforms physically
copy the entire contents of the affected local variables onto the stack, while other
platforms do not. Some platforms temporarily experience an increase in local
variable memory, while other platforms see a decrease. In either case, theresult is
anet loss of space. Overuse of the NEW command can cause an error by
overstepping the limits of available memory.

» Some implementations of error processing clear the stack, thereby restoring the
states of any local variables stacked with NEW. The 1995 ANSI M Standard error
processing constructs do not have this effect.

Related

KILL command
QUIT command
Examples

The following example uses the NEW command to preserve the states of the local
variables X, Y, and Z.

NEW L9, Lo, Lo

Commands 102

OPEN

The OPEN command gains exclusive ownership of adevice, allowing the current
process to send output to, and/or to read input from that device.

Format
O{ PEN} postcond SP L openargument

postcond ::={ : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth of
this expression.

openargument
Can be one of the following:

expr {: { deviceparameters} {: {timeout} {: mnemonicspec}}}
@ expratom V L argument

where:
deviceparameters ::= deviceparam

(deviceparam {:deviceparam }...)
deviceparam ::= expr

devicekeyword
deviceattribute = expr

Timeout is the number of seconds to wait before giving up if
the device does not become available (Whenever a
timeout expires, $TEST is set to 1 if the operation was
successful, or to 0O if it failed.)

mnemonicname

Mnemonicspec ::
(L mnemonichame)

Explanation

No other process can open the same device until ownership is relinquished with the

CL OSE command. If an attempt is made to open a device owned by another process, the
current process hangs until the device is released, or until a specified timeout period
expires. Whenever atimeout expires, $TEST isset to 1 if the operation is successful, or
toOif it fals.

A variety of device parameters and mnemonic specifiers can be specified. These depend
on the capabilities of the device in question and on the underlying M platform.

Comments
Keep the following points in mind when you use the OPEN command:

Commands 103

Device names and their meaning are highly dependent on the specific M platform.
Consult your Programmers Reference Guide for further details.

Mnemonic hames (mnemonicname) are specific to the underlying M platform.

When attempting to open a device that may be owned by another user, it is often a
good ideato use atimeout in case the device is unavailable for an extended period
of time. In some cases, the user may be asked whether to give up the process or to
wait until the device becomes unavailable.

After ownership of adevice has been established with OPEN, it is still necessary
to make the device current before attempting any input/output (1/0) operations on
that device. The USE command sets the current device.

Multiple device parameters are enclosed in parentheses, separated by colons.
Multiple mnemonic specifiers are enclosed in parentheses, separated by commas.

Related
CLOSE command

READ command

USE command

WRITE command

$TEST specia variable
Examples

The following DSM example attempts to open adevice for up to 30 seconds before
giving up. If the operation is successful, the following occurs:

Lines of text are read from afile whose identifier isin the variable T%File.

The lines are echoed to the principal device (PRINCIPAL) until ablank lineis
encountered.

Thefileisclosed.

DO $Env. Qut put (" Openi ng Device "_To%i |l e)

FOR T%.oop=1:1:10 DO $Env. Qutput (".")OPEN T%-ile::30 IF QU T
ELSE DO $Env. Qutput("Device " _%ile_is unavailable.") QUT
FOR DO QUIT: T%.i ne=""

. USE T%ile

. READ T%.i ne

. I F T%ine="" QUT

. USE $PRI NCl PAL

. WRITE T%.i ne, !

CLCSE T%i |l e

QIT

Commands 104

The following MSM exampl e attempts to open the HFS file server device for up to 30
seconds before giving up. If the operation is successful, the following occurs:

* Linesof text areread from afile whose identifier isin the variable T%File.

* Thelinesare echoed to the principa device ($PRINCIPAL) until ablank lineis
encountered.

« Thefileisclosed.

SET T%ev=51
OPEN T%ev: (T%ile,"R")::30
ELSE DO $Env. Qut put ("Unable to access HFS') QU T

FOR DO QUIT: T%.i ne=""
. USE To%Dev

. READ T%.i ne

. IF T%.ine="" QUT

. USE $PRI NCI PAL

. WRITE T%.i ne, !

CLOSE T%®ev

QT

Commands 105

PRESERVE

The PRESERVE command increments the internal reference count of an object
reserving it from destruction by the DESTROY command.

Format

PRE{ SERVE} postcond SP L preserveargument

postcond ::={ : tvexpr }

tvexpr evaluates to a truth-valued expression. Execution of the command is conditional
based on the truth-value of this expression.

preserveargument ::= expr V oref
@ expr V preserveargument

The argument of PRESERVE is an object reference.
Explanation
The PRESERVE command does the following:

» If theargument is not an oref, or references an object that does not exist, no action
ocCcurs.

» [If the argument contains an oref of an existing object, that object's internal
reference count isincremented by one.

Within the context of an object, the objects internal reference count can be incremented
or retrieved using the SREFERENCE specia variable.

Comments
Keep the following points in mind when you use the PRESERVE command:

* When using the DESTROY command to destroy an object, the following occurs:
- First the object’ sinternal reference count is decremented.

- Next, the destroy action quits if the reference count is one or greater. No
further action is taken.

- If the reference count goes to zero, the destruction of the object proceeds
normally and the DESTROY method will be called if it exists.

* The PRESERVE command simply increments the objects internal counter and
has no other side effects.

» For every application of the PRESERVE command to increment an object’s
internal reference count, a cooresponding DESTROY command must be applied
to decrement that count. Only on the destroy action that decrements the count to
less than one will the actual destroy take place.

* When the CREATE command creates an object, the internal reference count is set
to one. Y ou do not have to apply the PRESERVE command at object creation.

Commands 106

Please note that the PRESERVE command has no effect on avirtual object, because
virtual objects have no state.

Related
CREATE command

KILL command
$REFERENCE special variable
DESTROY command

$TEST specia variable
Examples

The following example increments the internal reference count of the object referenced
by the symbol T%SharedObject.

PRESERVE T%&har edObj ect

Commands 107

QUIT

The QUIT command terminates the stack level, recording the execution context as
recorded on the top process stack frame.

Format
Q{UIT} postcond SP { quitargument}

postcond ::={ : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth of
this expression.

guitargument
Can be one of the following:

expr
@ expratom V expr

where;

expr Is an expression (The expression's value determines
the return value of the current extrinsic function.)

Explanation

The QUIT command terminates execution of the current subroutine or extrinsic function.
Inside the scope of the FOR command, QUIT terminates iteration and exits the FOR
loop. Inside ablock, QUIT exitsthe current dot indent level, returning control to the
calling argumentless DO level.

The argument of aQUIT command that terminates an EsiObjects method, property
accessor or event handler is automatically assigned to the specia variable SRETURN. If
no argument is specified, then SRETURN is used as the return value.

When QUIT terminates a stack frame created by DO or XECUTE, execution resumes
immediately to the right of the DO or XECUTE argument that created the stack frame. If
the DO was argumentless, execution resumes with the next command following the DO.
In the case of an extrinsic function or value-returning object-with-service call, avalueis
returned into the context of an expression, and the evaluation of that expressionis
resumed. When QUI T is encountered in the scope of (on the same line and to the right
of) FOR, execution of the innermost FOR loop is terminated.

If the current process is an application-mode process or a background process created by
the JOB command, execution of the final QUI T, removing the last frame from the
process stack, terminates the process.

Commands 108

The QUIT command does not alow the conventional form of argument indirection. Note
that the syntax is @expr, not @quitargument. Theimplication is that the following
example, which intends to return the value 2, islegal:

SET Resul t="Y-2", Y=4
QU T @Resul t
But the following example, which intends to return the value 5, may not be legal for some
underlying M platforms:

SET Resul t="Y_Z", Y="X+2",Z="-1", X=4
QUI T @Resul t
Comments

Keep the following points in mind when you use the QUIT command:

* Inthe case of an extrinsic function or value-returning object-with-service cal, a
value is returned into the context of an expression, and the evaluation of that
expression is resumed. One difference between the two casesisthat QUIT hasan
argument in an extrinsic function, and is argumentless in the code body that
implements an object service.

* Theargumentless QUIT must be followed by two spaces before a comment or
other command that follows it on the same line. Do not confuse a postconditional
with the argument of the QUIT command.

Related

Extrinsic functions
DO command
FOR command

XECUTE command
Examples

The argument of aQUIT command that terminates an EsiObjects method, property
accessor or event handler is automatically assigned to the specia variable SRETURN. [f
no argument is specified, then SRETURN is used as the return value. Thus the example
below...

SET $RETURN=T®/al ue

QUT
...could be expressed more succinctly by the following example...

QU T TWal ue

The following exampleillustrates the use of QUIT in arecursive extrinsic function (in
other words, one that callsitself). This example implements the mathematical factorial
operation. For example, 5 factoria (written 5!) equals 5*4* 3*2* 1. It is generally true that
n! equals n*(n-1)!, and that 0! equals 1.

Commands 109

FACT(T%) ; Return LN factori al
| F TOAN<O! (TOM 1" =T%\) QUIT "
IF T9N=0 QUT 1

QUI T TN $$FACT(TON- 1)

The factorial operation only applies to nonnegative integers, so thefirst I F command
causes NULL (") to be returned when T%N is not a nonnegative integer. The second | F
command handles the special case where T%N equals 0. The QUIT on thethird line
handles the general case where T%N! equals T%N* (L%N-1)!.

Commands 110

READ

The READ command reads input from the current device and can send simple output.
Traditionally, the READ command has been used with dumb terminal devices.
EsiObjects does not support these devices. When the READ command isused, it is
usually used to read from an external device other than a dumb terminal.

Format
R{EAD} postcond SP L readargument

postcond ::={ : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.

Readargument ::= strlit
format
glvn {# intexpr} {: timeout}
*glvn {: timeout}
@ expratom V L readargument

Explanation

There are avariety of different forms of the READ command.

String literal A string or numeric value to be sent as output. Note that, in
contrast to WRITE, an expression cannot be specified in a
READ argument.

Format control A format control parameter, whose exact behavior can be
device dependent, and can have any one of the following
formats:

Issues a form feed.

! Issues a return (CR+LF
combination).

?integer Attempts to move the input position
forward on the current device by
writing spaces until $X equals the
specified integer. If $X is not less
than this value, no action occurs.

/controlmnemonic Performs a special device operation
defined by the specified control
mnemonic.

Variable name A variable name. The input value is stored in the specified

variable. The read operation can optionally be modified by the
following constructs:

Commands 111

intexpr The maximum number of characters
to read. The read process
terminates when this many
characters are read, guaranteeing
that the variable does not contain
more characters. If a timeout occurs
or a return is encountered, the
variable contains fewer characters.

:timeout The maximum number of seconds
to pause between characters.
$TEST is 1 if no timeout occurred, 0
if a timeout occurs.

* A single character is read from the
current device. The variable
contains the ASCII value of that
character, or 1 if a timeout occurs.

Comments

If specified, the maximum number of characters to read must be an integer greater than 0.
Negative values can cause errors. Noninteger values are interpreted as integers. For
example, the following two lines are equivalent:

READ T9%X: " 5. 6Hel | 0"

READ T%: 5
Related

WRITE command
$IO specia variable

$X specia variable
Examples

If aREAD argument is astring or format control parameter, it is used for output
purposes. If the argument is avariable name, it is used as a place to store input. These
two forms are used in combination in the following example, which asks the user for an
entry, storing the result in the variable T%EntryNumber and issuing areturn after the
user hastyped aresponse:

READ "Entry: ", T%ntryNunber,!
Entry: Sockets

Commands 112

The following code reads lines of text from afile whose identifier isin the variable
T%File and echoes those lines to the principal device ($PRINCIPAL) until ablank line
is encountered. Then thefileis closed.

OPEN T%-il e:: 10
ELSE DO $Env. Qutput("Device "_T%ile_" is unavailable.") QUT
FOR DO QU T: T%.ine=""
USE T%i | e
READ T%.i ne
IF T%ine="" QUT
USE $PRI NCI PAL
. WRITE T%.i ne, !
CLCSE T%-i |l e
QIT

Commands 113

SET

The SET command assigns the value of avariable (or some other SET destination).
Format

S{ET} postcond SP L setargument
postcond ::={ : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.
setargument ::= setleft = expr
(L setleft)
@ expratom V L setargument

where;

setleft ::= glvn
$D{EVICE}
$EC{ODE}
$ET{RAP}
$K{EY}
$X
Y
SE{XTRACT} (glvn{,intexprl{,intexpr2}})
SP{IECE} (glvn,expri{,intexprl{,intexpr2}})
object.property

Explanation
The following is the most common form of SET:

SET variable=vaue

In this format, the variable (or array node) is dynamically created if it did not exist yet. If
it already existed, its old value is overwritten. Existing array descendants are not affected.

Thefirst line in the following example assigns the value of variable T%Done and the
second line assigns the value of the subscript named by the variable T%L oop inside the
array 1%Elements.

SET T%Done=1
SET | %&l enent s(T%.o0p) =""

It isalso possible to set the values of certain special variables. For example, the
constructs SET $Y and SET $X are used to modify EsiObjects notion of the current row
and column positions, respectively.

DO PLOT(T%Row, T%Col urm) ; Set actual cursor position
SET $X=T%Col um, $Y=T%Row

SET $EXTRACT isused to replace one or more character positions of avariable's
contents without affecting the rest of the string. If the variable does not yet exist, it is

Commands 114

given astarting value of NULL (""). If the number of charactersin the existing string is
less then the starting character position, extra space characters are added as necessary.

SET T%&t ri ng=" ABCDEFG'
SET $EXTRACT(T¥String, 3, 5) ="*"
DO $Env. Qut put (T¥St ri ng)

Resul ts: AB*FG

SET $PIECE isused to replace one or more delimited pieces of a variable's contents
without affecting the rest of the string. If the variable does not yet exigt, itisgiven a
starting value of NULL (""). If the number of piecesin the existing string is less then the
starting piece position, extra delimiters are added as necessary.

SET T%Gtring="one/two/three/four/fivel/six/seven"
SET $PI ECE(T¥Gtring,"/",3,5)="*"
DO $Env. Qut put (T¥St ri ng)

Resul ts: one/two/ */si x/ seven

Entire SET arguments are evaluated one after another in left-to-right order. Within one
SET argument, the following order of evaluation applies:

1 If array subscripts or indirect references are found to the left of the equals sign
(except in SET $PIECE and SET $EXTRACT arguments other than the first
argument), those array subscripts and indirect references are eval uated.

The expression to the right of the equals sign is evaluated.

The resulting value is assigned to the destinations on the left side of the equals
sign. If there is more than one destination, they are assigned in left-to-right
order.

When the SET destination on the |eft side of the equals sign is of the form
object.property, the Assign accessor for that object isinvoked. Thisisamethod in whose
context SRETURN defaultsto 1. If the method returns 1 or some other true value, it
means that the assignment operation was successful; an event is then triggered. If the
method returns O or some other false value, it means that the assignment operation was
not successful; no event is triggered.

Handlers of the event automatically triggered by a successful return of the Assign
accessor must accept four parametersin their formal parameter list as follows:

* Object - The object reference of the object containing the property.
» Property - The full property name, of the form interface::name.

» Cadlframe object - An object that can optionally be used to inquire into the
parameters that were passed in.

e Operation- SET or KILL commands.

Commands 115

Comments

In assigning values to variables, the variable need not be defined prior to setting it. The
process of assignment dynamically creates the variable if necessary, or overwrites any
existing value. Thisis aso true when using the SET $PIECE and SET $EXTRACT
constructs, which both assume a starting value of NULL (") if the variable did not exist.

Related
$EXTRACT function

$PIECE function
$DEVICE special variable
$ECODE specia variable
SETRAP specia variable
SKEY specid variable

$X specia variable

$Y specia variable

Examples
Thefirst linein the following example assigns the value 1 to the variable T%Done.

SET T%one=1

The multiple-destination SET command can be used to assign the same value to more
than one destination in asingle operation. A list of destinations on the |eft side of the
equals sign is enclosed in parentheses. The following example sets the instance variables
1%Height and 1%Width to O.

SET (1 %-ei ght, | %W dt h) =0

In the following example, the construct SET $ETRAP is used to specify aline of code to
be invoked in the event of an error.

SET $ETRAP="DO ERRHNDL"MYRTN("" READFI LE"")"

SET $EXTRACT is used to replace one or more character positions of avariable's
contents without affecting the rest of the string. In this example, characters 3 through 5 of
the string in T%String are replaced with an asterisk (*).

SET T%&t ri ng=" ABCDEFG'
SET $EXTRACT(T¥String, 3, 5)="*"
DO $Env. CQut put (T¥St ri ng)

Resul t s: AB*FG

If the variable does not yet exigt, it is given a starting value of NULL (""). If the number
of charactersin the existing string is less then the starting character position, extra space
characters are added as necessary. In the following example, the variable T%String is

Commands 116

undefined, and character position 5 is replaced with the string "Text". To achieve this,
four spaces are automatically placed at the start of the string.

KILL T%String
SET $EXTRACT(TY%St ri ng, 5) =" Text"
DO $Env. Qut put (T¥St ri ng)

Resul ts: Text

SET $PIECE is used to replace one or more delimited pieces of a variable's contents
without affecting the rest of the string. In this example, pieces 3 through 5 of the string in
T%String are replaced with an asterisk (*).

SET T%Gtring="one/two/three/four/fivel/six/seven"
SET $PI ECE(T%String,"/",3,5)="*"
DO $Env. Qut put (T¥St ri ng)

Resul ts: one/two/ */si x/ seven

If the variable does not exist yet, it is given astarting value of NULL (""). If the number
of piecesin the existing string is less then the starting piece position, extra delimiters are
added as necessary. In this example, the variable T%String is undefined, and "." piece 5

is replaced with the string Text. To achieve this, four periods are automatically placed at

the start of the string.

KILL T¥%String
SET $PI ECE(T%String,".", 5)="Text"
DO $Env. Qut put (T¥St ri ng)

Results:Text

The following example uses a FOR loop with the one-argument SLENGTH, SET
$PIECE, and SEXTRACT to produce a string in which the individual characters of the
string EsiObjects become comma-delimited pieces in the variable T%String. After these
lines have been executed, T%Result should contain the string "E,s,i,O,b,j,ect,s".

SET T%Resul t="", T¥%st ri ng="Esi bj ects"
FOR T%.oop=1: 1: $LENGTH(T¥st ri ng) DO
. SET $PI ECE(T%Resul t,",", T% oop) =$EXTRACT(T¥St ri ng, T%.o0p)

The following extrinsic function performs a search-and-replace operation on a string,
sending back the transformed string as its return value. It uses the two-argument
$LENGTH to measure the number of piecesin the source string, and uses $PIECE and
SET $PIECE to do the replacement operation.

REPL(L%t ri ng, L%rom L% 0) ; Replace L% romwith L% 0o in L%Btring
NEW L% t er, L%Resul t, L%.engt h
| F L%ronm="" QUT ""
SET L%.engt h=$LENGTH(L%&t ri ng, L%-r o)
| F L9%o="" SET L%esult="" FOR L%ter=1:1:L%ength DO
. SET L%Resul t =L%Resul t _$PI ECE(L%Stri ng, L% rom L% ter)
ELSE FOR L%ter=L%ength:-1:1 DO
. S $P(L%Resul t, L%lo, L% ter)=$P(L¥String, L%rom L% ter)
QU T L%Resul t

Commands 117

The following expression should return the string EsiObjects Language for EsiObjects
Programming:

$$REPL("M Language for M Progranm ng", "M, "Esi Obj ects")

Setting a property's value invokes the Assign accessor method. For example, the
following code invokes the Assign accessor method for the Visit property of the object
T%Object12:

SET T%Obj ect 12. Vi si t ($HOROLOG, T9@xnum) =10

Assuming that the Assign accessor method is able to successfully assign the value 10, it
returns some true value such as 1. In this case, an event istriggered. The event includes
the following parameters:

e Object

* Full property name
e Cadlframe object

e Operation

The following code might be used to handle this event. If the SHOROL OG value
specified in the first parameter indicates today's date, the handler exits. Otherwise, it gets
the remaining parameters and calls the LOG subroutine to make note of the event.

HANDLE(T%bj ect , T%r operty, TUCFO, L% per) ; Handl e assign/kill
| F +(TY%CFQ Paraneter (1))=+$H Q ; Exit if it is today
SET T%/al ue=CFO. Par anet er (2)
DO LOE TW/al ue, T% per)
QT

Commands 118

USE

The USE command is used to set the current input device to some owned device.
Format

U{ SE} postcond SP L useargument
postcond ::={ : tvexpr }

tvexpr evaluates to a truth-valued expression. Execution of the command is conditional
based on the truth-value of this expression.

useargument
Can be one of the following:

expr {: { deviceparameters} {: mnemonicname} }
@ expratom V L argument

where:
deviceparameters ::= Deviceparam
(deviceparam{:deviceparam}...)
deviceparam ::= Expr
Devicekeyword
Deviceattribute = expr
Explanation

The USE command is used to set the current input device $1 O to some owned device.
The argument of the USE command must be a device that is owned by the current
process, optionally followed by device parameters and/or a mnemonic name appropriate
to that device. If thisoptional information is not specified, default values are assigned by
the underlying M platform.

Comments
Keep the following points in mind when you use the USE command:

* Only adevice aready owned by the current process can be specified in the
argument of USE. The OPEN command is used to gain ownership of adevice.
The principal device ($PRINCIPAL) is automatically owned at login (except in
the case of certain background processes not tied to any device).

* Multiple device parameters are enclosed in parentheses, separated by colons.

» Device 0issynonymous with $PRINCIPAL . Therefore, note the following
command:

« USEO

Commands 119

The previous command is equivalent to the following:
* USE $PRINCIPAL

e The USE command affects the special variables $10, $KEY, $X, $Y, and
$DEVICE, whose values are all determined by the current device.
Related

CLOSE command

OPEN command

READ command

WRITE command

$DEVICE special variable
$I1O specia variable

SKEY specid variable
$PRINCIPAL specia variable
$X specia variable

$Y specia variable
Examples

The following DSM example reads lines of text from afile whose identifier isin the
variable T%File. It echoes these lines to the principal device (PRINCIPAL) until a
blank lineis encountered. Then thefileis closed. The USE command is invoked
repeatedly to set the current device so that line after line can be read first from the file
and then can be displayed on the principal device.

OPEN T%-il e:: 30

ELSE DO $Env. Qutput ("Device " _T%%ile_" is unavailable.") QUT
FOR DO QU T: T%.i ne=""

. USE T%ile

. READ T%.i ne

. IF T%ine="" QUT

. USE $PRI NCI PAL

. WRI TE T%.i ne,!

CLCSE T%-i |l e

QT

Commands 120

The following MSM exampl e attempts to use the HFS file server device for up to 30
seconds before giving up. If the operation is successful, the following occurs:

* Linesof text areread from afile whose identifier isin the variable T%File.

» Thelinesare echoed to the principa device ($PRINCIPAL) until ablank lineis
encountered.

« Thefileisclosed.

SET T%ev=51

OPEN T%ev: (T%ile,"R")::30
ELSE DO $Env. Qut put ("Unabl e to access HFS")
FOR DO QU T: T%.ine=""

. USE T%ev

. READ T%.i ne

. I F T%.ine="" QUT

. USE $PRI NCl PAL

. WRITE T%.i ne, !

CLCSE T%ev

QT

Commands 121

WATCH

The WATCH command specifies that one or more events are to be watched for one or
more objects.

Format
WA{TCH} postcond SP{L warg}

postcond ::={ : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.

warg ::= target.weleref@expratom V L warg
weleref ::= ielem:vector

(L ielem:vector)
ielem ::= Rielem

@expratom V rielem

rielem ::= $PROPERTIES

$SEVENTS

event

property
vector ::= label{*{interface::}method}
Explanation

It ispossible for the WATCH command to watch specific events or properties by naming
them, to watch all events by specifying the special name (not a specia variable)
$EVENTS, or to watch all properties by specifying the special name $PROPERTIES.
The target argument indicates an object for which events and properties are to be
watched.

Each time awatch is specified, a callback vector must be named. This vector must be a
public label in the specified method (or the current method if none is specified). The
method is assumed to be in the primary interface for the current class, unless another
interfaceis specified.

Property Watches

When watching $PROPERTY or a specific property, the format for the associated |abel
within the specified method is as follows:

(Public) LABEL(Ooj ect, Property, Cal | Frame, Acti on, Val ue) ;

Commands 122

The following table describes the valid parameters. These values are passed into the
method when the event isfired.

Parameter Description

Object The object reference of the object containing
the property.

Property The full property name in the form

interface::propertyname.

Callframe An object that can optionally be used to inquire
into the parameters that were passed in. This
object is the callframe object. It is always null
when the DEAD event type is specified.

Action "PRESET", "SET", "SETREJECT",
"PREKILL", "KILL", "KILLREJECT" or
"DEAD" identifies the event type.

Value

When a property valueis actually changed
through a SET command, the valueit is set
to will be passed back. This appliesto the
PRESET and SET actions.

One useful property of the Callframe object is Cancel Action. If this property isset to 1
(Set obj.CancelAction=1) for the Action types PRESET and PREKILL, the setting or
killing of the property will be aborted.

Event Watches

When watching $EVENTS or a specific event, the format for the associated |abel within
the specified method is as follows:

(Public) LABEL(Ooj ect, Event, ..) ;
Thefirst two parameters always present by default and are described below.

Parameter Description

Object The object reference of the object firing the
event.

Event The full name of the event in the form

interface::eventname.

Any additional parameters passed into the handler are those specified on the EVENT
command.

When awatched object is destroyed viathe DESTROY command, the system will
automatically generate a ObjectDead event. Thisisuseful in cases where it isimportant
to know when objects are destroyed so that some action can be taken. This event can be
watched in the normal fashion using the WATCH command.

Comments
Keep the following points in mind when you use the WATCH command:

Commands 123

» If aconcerned object wants to watch all events except for one about the watched
object, it isnot possible to use WATCH $EVENTS and then use the IGNORE
command to the specific event. Instead, it is necessary to specifically watch those
events about which the object is concerned.

» If aconcerned object is watching $SPROPERTIES and a single property, it is
informed twice when an event for that property is triggered.

» If thewatched object has used the SWATCHDETECT function, it can be
informed that it is being watched.

* Thelabel used to handle an event must be public. It must be ableto handle at least
two parameters:

* OBJECT - An object reference to the watched object.

* MESSAGE - The name of the event or property that was triggered by the EVENT
command.

* Anexample of apublic label would be:
(PUBLIC)BEVENT(OBJMSG) ;

* However, many events send additional parameters, and the handler's formal
parameter list must not declare fewer parameters then are sent with the event.
Related

Method structure

EVENT command

IGNORE command
SWATCHDETECT function

Examples

The following example causes the current object to watch all events for the object
T%Object12. The handler for an event from this object isthe label MODIFY in the
method Update that is part of the primary (default) interface.

WATCH T%bj ect 12. $EVENTS: MODI FY~Updat e

The following example causes the current object to watch all properties for the object
T%0Object12. The handler for a property from this object isthe label MODIFY in the
method Update.

WATCH T%bj ect 12. $PROPERTI ES: MODI FY~Updat e

The following example causes the current object to watch the Renamed event for the
object T%Object12. The handler for this property is the label MODIFY in the method
Update.

WATCH T%bj ect 12. Renanmed: MODI FY"Updat e

Commands 124

The following example causes the current object to watch the Renamed and
ObjectDeleted events for the object T%Object12. The handlers for these methods are the
public labels MODIFY and DELETE, respectively, in the method Update.

WATCH T%bj ect 12. (Renaned: MODI FY*Updat e, Obj ect Del et ed: DELETE*Updat e)

Commands 125

WRITE

The WRITE command is used to write to the current device. Traditionally, the WRITE
command has been used with dumb terminals. EsiObjects does not support dumb
terminals, however, the Output Window of the EsiObjects Visual Development
Environment serves as an output device for the WRITE command. The WRITE
command can be used for all devices supported by the underlying M implementation.

Format
W{RITE} postcond SP L writeargument

postcond ::={ : tvexpr }

tvexpr evaluates to a truth-valued expression. Execution of the command is conditional
based on the truth-value of this expression.
writeargument ::= expr
format
*intexpr
@ expratom V L readargument

Explanation
There are several different forms of the WRITE command.

Expresson An expression whose value is sent to the current device as outpui.

Format Control A format control parameter, whose exact behavior can be device
dependent and can have any one of the following formats:

issues a form feed.
! issues a return. (CR+LF)
? integer writes spaces while $X is less than the specified integer. If

$X is not less than this value, nothing happens.

/controlmnemonic performs a special device operation defined by the
specified control mnemonic.

Integer Expression A number denoting an ASCII character code value. The
corresponding ASCII character is sent as output to the current
device. This is useful in generating escape sequences and control
characters. The $CHAR function is an alternative approach.

Comments
Keep the following points when you use the WRI TE command:

» ASCII character codes can be specified with the WRITE *integer syntax or with
the SCHAR function. For example, the following examples are the same:

WRITE *27,*96,* 65
WRITE $CHAR(27,96,65)

Commands 126

* Theargument of aWRITE command can be any expression. For example, you
can call an extrinsic function in an expression. This extrinsic function can issue a
USE command, which changes the current device. When the function returns, the
WRITE command's argument are directed to the new current device instead of the
device that was current when the WRITE command began to evaluate its
argument.
Related

$10 specia variable

$X special variable
Examples

The WRITE command can specify format control parameters that modify the output
position on the current device. These parameters can be combined in any way in asingle
WRITE argument, aslong as the ? parameter is the last parameter specified. In the
following example, the WRITE command issues aform feed and two returns, moves the
cursor to the 10th column position, and displays the height in variable H. It then issues
another return, moves the cursor to the 11th column position, and displays the width in
variable W.

WRI TE #!!?10, "Height: ", H !?11, "Wdth: ", W

The following example reads lines of text from afile whose identifier isin the variable
T%File, echoing those lines to the principal device ($PRINCIPAL) until ablank lineis
encountered. Then thefileis closed.

OPEN T%-ile:: 10
ELSE DO $Env. Qutput ("Device "_T%%ile_ " is unavailable.") QUT
FOR DO QU T: T%.i ne=""
. USE T%ile
. READ T%.i ne
IF T%.ine="" QUT
. USE $PRI NCI PAL
. WRI TE T%.i ne,!
CLCSE T%-i |l e
QIT

Many M programmers are used to using the WRITE command to write information out to
the principle device while programming and in particular, while debugging. Y ou can use
the WRITE command in the same manner in EsiObjects. When executing the WRITE
command in an execute shell, the output will be directed to the Output tab sheet of the
Output Window. For example:

W"Test" ;Create a line in the Qutput Wndow with the text "Test"
W!, K "Test" ;Create an enpty Line, followed by "Test"

W# ;Clear the Qutput tab sheet of the Qutput W ndow

W?10,"Test” ;Create a line, 10 spaces, then another line with "Test"

WI!! ;This is not supported and will generate an error.

Commands 127

W!,! ;Adds two lines to the output w ndow.

Commands 128

XECUTE

The XECUTE command's argument is a string of EsiObjects code to be executed as
though it were called as a subroutine from within the current code body. The Xecute
command violates encapsul ation and should not be used unless necessary.

Format
X{ECUTE} postcond SP L xargument

postcond ::={ : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.

xargument
Can be one of the following:
expr postcond

@ expratom V L xecuteargument

where:
expr is an expression whose value is a single line of M code
Explanation

In general, the following example:

XECUTE T% CodeToExecut e

Is equivalent to the following:

DO SUBRTN99

SUBRTNO9 ; | magi nary Subroutine
(Contents of T% odeToExecute)
QIT

Note that neither alabel nor aline-start indicator should be present at the beginning of the
xecute string, nor should areturn be present at the end.

It isuseful to keep this analogy in mind when thinking about the effect of certain
language elements, such as QUIT and $TEST, inside the scope of the XECUTE
command. XECUTE does not place $TEST on the stack, and a QUI T inside its context
exitsthe XECUTE, not the calling line of code. Because the contents of the expression
are confined to asingle line of code, it is not possible to place any commands after the
scope of aFOR, |F or EL SE.

Nearly all EsiObjects language elements can be used inside the xecute string, aslong as
they are appropriate in a subroutine called from the current code body. The xecute string
can contain extrinsic function calls, subroutines invoked by DO, and recursive callsto the

Commands 129

XECUTE command. Because it is confined to asingle line, there is no reason to place
the argumentless DO inside an xecute string.

Like GOTO and DO, XECUTE allows a postconditional to be applied to the command,
or to any of its arguments. The following table summarizes the results when the
postconditional in either location istrue or false.

Result Postconditional on Postconditional on Argument
Command
True Execute the command Execute that argument before
and its arguments. going on to the next argument
or command.
False Skip the command and all Skip that argument and go on
its arguments. to the next argument or
command.
Comments

Keep the following points in mind when you use the XECUTE command:

» XECUTE creates a process stack frame to remember the execution location where
it was called just like a subroutine call invoked with DO. The value of the STEST
special variable is not recorded on this stack frame. As aresult, the value of
$TEST can be changed by operations inside the xecute string, or by code invoked
from DO or XECUTE commands in the xecute string.

* A new stack frameis created to run the code in the XECUTE string. A QUIT
command inside the xecute string removes this stack frame, exiting the xecute
string and returning to the immediate right of the calling XECUTE argument.
(Thisdoes not apply to aQUIT command that is inside the scope of a FOR loop
in the xecute string, which only terminates the loop as usual.)

Related

DO command

QUIT command
Examples

Sometimes, when using the XECUTE command, it is necessary to specify quotation
marksinside a string literal. In such cases, two quotation marks are used for every
guotation mark desired in the target string. Thisis applied recursively for stringsinside
strings. For example, consider the following line of code:

DO $Env. Qut put (" Hel | 0")

Thisline of code uses quotation marks to delimit the string literal Hello. It can be
embedded inside an XECUTE command as follows:

XECUTE "DO $Env. Qutput (""Hello"")"

Commands 130

ZAPPLY

The ZAPPLY command applies some or al of the object's instance variablesin the
context of an object's CREATE method. This alows access to these instance variables
inside the context of the CREATE method.

Format
ZAP{PLY} postcond SP{L zapargument}

postcond ::={ : tvexpr }

A truth valued expression. Execution of the command is conditional based on the truth-
value of this expression.

zapargument
Can be one of the following:

property
@ expratom V L zapargument

where;

property is the name of a property to be
applied

Explanation

The ZAPPLY command applies the values of instance variables to an object inside the
CREATE method. The CREATE method, if defined, is called by the CREATE
command when creating a new instance of a class. The instance variable values are not
normally applied until after the CREATE method has finished executing. Therefore,
ZAPPLY alowsinstance variable values to be accessed inside the context of the -
CREATE method.

For afull description about creating an object, see the CREATE command.
Comments
Keep the following points in mind when you use the ZAPPLY command:

* ArgumentlessZAPPLY applies all instance variable values to the object.

* Theargument of the ZAPPLY command is a property name, not an instance
variable name.

e Useof theZAPPLY command isvalid only inside the CREATE method and in no
other context.
Related

CREATE command

Commands 131

Examples

The following example applies al instance variables to the object being created. Thisis
currently the most common use of the ZAPPLY command.

ZAPPLY
In the following example, only the Height and Width properties are applied.

ZAPPLY Hei ght, Wdth

Specia Variables 132

Special Variables

Specia variables are system defined and maintained variables that contain information
about various values or processes in the operating environment. If you need to know or
use the information stored in the special variable, you can access the information by
using the specia variable name.

Each specia variableislabeled asto its ANSI Standard status as described in the
following table:

Status Description

Standard Indicates that the language element is part of the
M ANSI Standard.

Proposed Indicates that the language element is being
proposed as an addition to the M ANSI Standard.

Extended Indicates that the Standard language element has
been modified for use in EsiObjects.

EsiObjects Indicates that the language element is not part of

the Standard and is an extension of EsiObjects.

Vendor Indicates that the language element is M vendor-
specific.

Specia Variables 133

$CALLER

The $CAL L ER special variable returns an object reference to the object that sent the cur-
rent message.

Format

$CALLER

Explanation

The $CALLER return value is an object reference (oref) or NULL (") if no object sent

the message. This special variable generally is used to send messages back to the calling
object as part of adiaog, or to interact with properties of the calling object.

Comments
Callbacks are an aternative to using the $CAL L ER special variable. For more

information about using callbacks see Callback Syntax and the Using Eventsin the
Es Objects Programmer's Reference Guide.

Related

Message Syntax
Examples

The following example assigns the Text property of SCALLER.

SET $CALLER. Text =T%lext

Specia Variables 134

$CALLFRAME

The $CALLFRAME specia variable returns the OID of the current call frame.
Format

$CALLFRAME
Explanation

$CALLFRAME returnsthe OID of the current call frame context. The OID can be used
to provide object-oriented access to that objects interface. It istypically used in
conjunction with the $SDELEGATE function. $DELEGATE is used to del egate the call
frame to another method. $CALLFRAME is used to access that call frame object as an
object through its services.

Related
Message Syntax
$DELEGATE Function

SUNKOWN special method.
Examples

The following example saves the value of $CALLMETH to atemporary variable.

SET T%Nanme=$CALLMETH

Specia Variables 135

$CHILDCNT

The $CHILDCNT specia variable returns the number of children an object has. It isthe
cardinality of children collection pointed to by $PEERS.

Format
$CHILDCNT
Explanation

The $CHILDCNT special variable returns the number of children objects that exist
within the context of the current object. The children are stored in a collection and the
count is the cardinality of that collection. Child objects are created throught the Child=1
keyword on the CREATE command.

Comments

The $CHILDREN specia variable holds the pointer to the collection of child objects. The
$CHILDCNT specia variable returns the cardinality of that collection. Typically, these
special variables are used to find leaks in an application, that is, objects that are not
acconted for. Typically, it isused as a debugging tool.

The EsiObjects Object Browser makes use of these special variables. A special tool bar
exists that permits the display of child objects.

Related
$CHILDREN special variable

$LASTCHILDID specia variable
$PEERS special variable

$SELF special variable

CREATE command

Specia Variables 136

$CHILDREN

The $CHILDREN specia variable provides a browsing context for finding the children
of the current object.

Format
$CHILDREN
Explanation

The $CHILDREN specia variable contains a pointer to the collection that holds the
children of the current object created by specifying the Child=1 on the CREATE
command. Access to the collection istypically used by the programmer to determine
memory leaks. That is, are there objects that exist that are not accounted for by the
application.

Comments
$CHILDREN is used primarily as a debugging tool to determine orphaned child objects.

The EsiObjects Object Browser uses this variable to access the child objects if the Child
tool bar button is pressed.

Related
$CHILDCNT special variable

$LASTCHILDID specia variable
$PEERS special variable

$SELF special variable

CREATE command

Specia Variables 137

$CLASS

The $CL ASS special variable contains the class of the current object.
Format

$CLASS
Explanation

The $CL ASS special variable contains an object reference (or ef) to the class of the
current object.

Comments

The name of the class can be obtained by examining its Name property. The class name
is not always known because method implementations are often inherited by subclasses.

Related
Message Syntax

$CALLMETH
Example

The following example gets the name of the object's class.

SET T% assNane=$CLASS. Nare

Specia Variables 138

$DEVICE

The $DEVICE specid variable returns the status of the current device
Format

$D{EVICE}
Explanation

The $DEVICE specia variable returns the status of the current device in the following
format:

status { ,info { ,text} }

where:
status is normally O, but can be nonzero in case of an error
Info contains other device information
Text is a text message explaining the current status

Only text can contain commas.
Comments

Keep the following points in mind when you use the $DEVICE specia variable:

« $DEVICE evaluatesto atrue value if adevice error has occurred. Therefore, it is
convenient to use $DEVICE as an argument of the | F command.

» $DEVICE is sensitive to the current device. Therefore, whenever the USE
command is issued, the value of $DEVICE islikely to change as aresullt.

» Thetext portion of $DEVICE can contain commas. Therefore, when using
$PIECE to obtain this portion, it is not sufficient to get only the third comma-
piece.

Related

IF command
USE command

$1O specia variable

Specia Variables 139

Examples

The following example uses the truth value of $DEV I CE to determine whether an error
has occurred on the current device. If an error occurs, it uses $1 O to determine the device
identifier, $PI ECE to obtain the three components of $DEVICE and displays them in the
output window.

IF $DEVICE DO ; Display error text

. SET T%Code=$PI ECE($DEVI CE, ", ")

. SET T%Status$PlI ECE($DEVI CE, ", ", 2)

. SET T%Text $PI ECE($DEVI CE, ", ", 3, 999)
DO $ENV. Qut put ("Error on device "_T%Devi ce)
DO $ENV. Qut put ("Error code="_T%Code_", Status="_T%st at us)
DO $ENV. Qut put ("Error text="_T%ext)

Specia Variables 140

$DOMAIN

The $DOMAIN special variable produces the current domain name.
Format

$DOMAIN
Explanation

Domains are objects for creating a common naming structure and storage structure.
Comments

0% variablesreside in domains.
$Domain can be set to the name of avalid domain name or a NewNamePool object.
The domain must exist.

Related

CREATE Command
Examples

Set $Donmmi n="Test” ;Switch to the Test domain.

Specia Variables 141

$ECODE

The $ECODE specia variable contains the current error condition.
Format

$EC{ ODE}
Explanation

The $ECODE specia variable contains the current error condition in the following
format:

, ecode{, ecode ...} ,

Each ecode cannot contain any commas. Vaues of ecode beginning with M are part of
the ANSI M Standard, values beginning with U are user-defined, and values beginning
with Z are implementation-specific. If no error occurs, $SECODE equals NULL ("").

Comments
The error codes in $SECODE are surrounded by commas (they are not comma-delimited).

Therefore, the number of comma-pieces in the string is aways two greater than the
number of error codes.

EsiObjects adds the following special codes to those generated by ANSI Standard M, and
by the underlying M implementation.

ZOREJECT
ZOCALL
ZOUNDEL
ZODEAD
ZOSUBSCR
ZOPOOL

All codes are in the form of

<Code-EsiObjectsCode>
Related

$ESTACK special variable
$ETRAP specia variable

Specia Variables 142

Examples

The following example displays the current error trap, error stack level, and each of the
error codesin $ECODE. Note that because the argumentless DO creates an additional
stack level, it is necessary to record some of the values before entering the block.

| F $ECODE' ="" SET T%ECode=$ECCDE, T¥ESt ack=$ESTACK DO
. SET T%ETr ap=$ETRAP
DO $ENV. Qut put ("Error Trap: "_TY%ETrap)
DO $ENV. Qut put ("Error Stack level: "_T%ESt ack)
DO $ENV. Qut put ("Error Codes: ")
FOR T9%.oop=2: 1: $LENGTH(T%Code, ", ")-1 DO
. SET T hi sECode=$PI ECE(T%Code, T% oop)
DO $ENV. Qut put (" "_Tod@hi sEcode_" " _$$ERRLKUP(T%Ihi sECode))

QT
A specia extrinsic function at the ERRLKUP label is not shown.

Specia Variables 143

$ENVIRONMENT

The SENVIRONMENT specia variable contains an object reference to the EsiObjects
environment.

Format

$ENV{IRONMENT}

Explanation

The environment can handle a variety of useful general messages. Error reporting is one
of many applications of this feature.

Comments

The environment always exists when EsiObjectsis running. Every time the system is
restarted, a new incarnation of the environment is created. Therefore, object references to
the environment are no longer valid during the next EsiObjects session. Checking

whether the incarnation has changed is a useful way of determining whether a new
session has been started.

Examples

The following example displays a warning message. Note the use of SENVIRONMENT
to produce the error message.

DO $ENVI RONMENT. Error (Text:"Invalid input sent to ")

The following example uses SENVIRONMENT to find the value of the WindowHeight
preference.

SET T9%Hei ght =$ENVI RONVENT. Fi ndPr ef er ence(Nane: "W ndowHei ght ")

Specia Variables 144

$ESTACK

The $ESTACK specia variable contains the number of stack levels since the stack frame
that last contained an error condition.

Format

SES{ TACK}
Explanation

The $ESTACK special variable contains the number of stack levels since the stack frame
that last contained an error condition. If no error condition has occurred, $ESTACK is
empty.

Comments

Every subroutine call, argumentless DO, and so on, creates a new stack frame entry. If an
error occurs, then this adds 1 to the value of SESTACK .

Related
$ECODE specia variable

SETRAP special variable
Examples

The following example displays the current error trap, error stack level, and each of the
error codesin $ECODE. Note that because the argumentless DO creates an additional
stack level, it is necessary to record some of the values before entering the block.

| F $ECODE' ="" SET T%ECode=$ECCDE, TY¥ESt ack=$ESTACK DO
. SET TY%ETr ap=$ETRAP
. DO $ENV. Qutput ("Error Trap: "_TY%ETrap)
. DO $ENV. Qut put ("Error Stack |evel: "_T%ESt ack)
. DO $ENV. Qut put ("Error Codes:")
. FOR T9%.00p=2: 1: $LENGTH(T%Code, ", ")-1 DO
. SET T9@hi sECode=$PI ECE(T%Code, T%.oop)
. DO $ENV. Qut put (" "_T9dhi sECode_" " _$$ERRLKUP(T%Ihi sECode))
QIT

Specia Variables 145

$ETRAP

The $SETRAP specia variable equals a string of code to be invoked at the current M
process stack level if an error occurs.

Format

$SET{RAPF}
Explanation

The $SETRAP specia variable equals a string of code to be invoked at the current M
process stack level if an error occurs.

Comments

The M process stack is not equivalent to the EsiObjects method process stack.
Related

$ECODE specia variable

SESTACK special variable
Examples

The following example displays the current error trap, error stack level, and each of the
error codesin $ECODE. Note that because the argumentless DO creates an additional
stack level, it is necessary to record some of the values before entering the block.

| F $ECODE' ="" SET T%ECode=$ECCDE, T¥ESt ack=$ESTACK DO
. SET TY%ETr ap=$ETRAP
. DO $ENV. Qutput ("Error Trap: "_TY%ETrap)
. DO $ENV. Qut put ("Error Stack |evel: "_T%ESt ack)
. DO $ENV. Qut put ("Error Codes:")
. FOR T9%.00p=2: 1: $LENGTH(T%Code, ", ")-1 DO
. SET T9@hi sECode=$PI ECE(T%Code, T%.oop)
. DO $ENV. Qut put (" "_T9dhi sECode_" "_$$ERRLKUP(T%Ihi sECode))
QIT

Specia Variables 146

$HOROLOG

The $SHOROL OG specid variable contains an internal numeric representation of the
current date and time.

Format

$H{ OROLOG}
Explanation

The SHOROL OG specid variable contains an internal numeric representation of the
current date and time. This specia variable contains two numeric values, separated by a
comma. Thefirst value isthe number of days since December 31, 1840. The second
value is the number of seconds since midnight.

Comments
Keep the following points in mind when you use the SHOROL OG special variable:

» Thefirst comma-piece contains the number of days since December 31, 1840.
Remember that thereis aleap year every four years. Also, every 100 years thereis
acentennia (no leap year).

+ MODULO division and integer division are important tools to keep in mind when
calculating the time based on the second comma-piece of $SHOROL OG.
Examples

The following example produces a string containing the approximate year, based on the
first comma-piece of SHOROL OG.

SET T%ear =$HOROLOG\ 365. 25+1841

The following extrinsic variable returns a string containing the approximate time, based
on the second comma-piece of SHOROL OG. Note the use of $SELECT, $JUSTIFY,
and $TRANSLATE in this function.

TIME() ; TIME extrinsic variable
NEW Lo me, L%our, L% nut e, L%Veri di an
SET L% me=$PI ECE($HOROLOG ", ", 2)
| F L% me#43200=0 QUI T "12: 00" _$SELECT(L%i me: "pni', 1: "ani')
SET L%Hour =L%li ne\ 3600
SET L%eri di an=$SELECT(L%1our >11: "pnt, 1: "ant')
SET L%our =$JUSTI FY(L%-our #12, 2)
| F L%Hour=" 0" SET L%our=12
SET LYM nut e=$JUSTI FY(L%Ti ne\ 60#60, 2)
SET L% me=$TR(L%our _":"_ L%V nute_L%eridian," ",0)
QU T L% ne

Specia Variables 147

SINTERFACE

The $INTERFACE special variable contains the name of the current default interface whichiis
normally Primary.

Format

$IN{TERFACE}

Explanation

Within the execution context of a method, the current interface is aways available within the
$INTERFACE specid variable. Its scope is the currently executing method.

Related

M essage Syntax

Example

The following line sets atemporary variable to the name of the interface the execution context.
Set T%Name=$INTERFACE

Specia Variables 148

$I0

The $1 O special variable returns the device identifier of the current device.
Format

$I{ O}

Explanation

The $1 O special variable returns the device identifier of the current device.
Comments

Keep the following points in mind when you use the $1 O specia variable:

e Thevaue of $1 O can change whenever the USE command is issued.

* Thevaluesof the SDEVICE, $KEY, $X, and $Y special variables are also
sensitive to the current device.
Related

USE command

$DEVICE special variable
SKEY specid variable

$X specia variable

$Y specia variable
Examples

The following example uses the truth-value of $DEV | CE to determine whether an error
has occurred on the current device. If so, it uses $1 O to determine the device identifier,
$PIECE to obtain the three components of $DEV I CE, and displays them on the
principal login device $PRINCIPAL .

IF $DEVICE DO ; Display error text

. SET T%evi ce=$l O

. SET T%Code=$PI ECE($DEVI CE, ", ")

. SET T%St at us$PlI ECE($DEVI CE, ", ", 2)

. SET T%Text $PI ECE($DEVI CE, ", ", 3, 999)

. USE $PRI NCl PAL

. DO $ENV. Qut put ("Error on device "_T%evi ce)

. DO $ENV. Qut put ("Error code="_T% ode_", Status="_T%St at us)
. DO $ENV. Qut put ("Error text="_T%lext)

Specia Variables 149

$JOB

The $JOB specia variable contains the job number of the current process.

Format

$} OB}

Explanation

The job number of the current process is a positive integer that is uniqueto asingle

process. This number is useful for operations that may need to be executed
simultaneously by more than one M process.

Comments
It is common to use $JOB as an array subscript when it is necessary to maintain separate
information for avariety of different processes. Because there is sometimes a possibility

that $JOB values can be reused later by processes not related to the current process, it is
useful to initialize process-related subtrees after startup.

Related

JOB command
Examples

The following example uses $JOB as an array subscript to prevent information from
other process from coming into conflict with information from the current process.

SET "GLQ($JOB, T¥ENt ry) =TW/al ue

The following example uses $JOB as an array subscript in initializing a subtree, to
prevent information from former processes that shared the same job number from coming
into conflict with information from the current process.

KI LL ~GLO($JOB)

Specia Variables 150

$KEY

The $KEY specia variable contains the control sequence that terminated the last READ
operation on the current device.

Format
$K{EY}
Explanation

If the last READ was not terminated by a control sequence, $KEY isNULL ("").
Examples of read operations that cannot terminate with a control sequence are fixed-
width reads, ASCII code reads, and reads with a timeout.

Comments
Keep the following points in mind when you use the 3KEY specia variable:

* Insome forms of the READ command, information islost whenever the user
presses the return key or uses some other control string to terminate the READ
operation. The SKEY specia variable allows this information to be retained.

» Thevaueof $KEY varies according to the current device. Therefore, it islikely to
change whenever a USE command is executed. If you want to change devices
before using the valuein $KEY (such asfor error reporting), record thisvaluein a
temporary variable before issuing the USE command.

Related

USE command

$1O specia variable
Examples

The following example uses $KEY to determine whether or not the last READ was
terminated by a control string. Note that the values of $KEY and $I O are recorded before
the USE command is issued because the USE command changes the current device.
$ASCI I isused to convert control characters back into numeric codes.

| F $KEY' ="" DO

. SET T%.ist="(no termnator)"

. FOR T%.oop=1: 1: SLENGTH($KEY) SET

$PI ECE(T%.i st, " +", T%.00p) =$ASCI | ($KEY, T%.o0p))

. DO $ENV. Qut put ("The last read on device "_$1 0" was terninated by:
" _T9%i st)

QIT

Specia Variables 151

$LASTCHILDID

The SLASTCHILD specia variable returns the internal number of the last child in the
current objects child collection.

Format

$LASTCHILD
Explanation

The $SLASTCHILDID is used to get the last child of a collection.
Comments

Thisisused primarily as a debugging aid to determine orphan children of an object.
Related

$CHILDREN special variable
SCHILDCNT special variable
$PEERS specia variable
$SELF special variable
CREATE command

Specia Variables 152

Examples $LIBRARY

The $LIBRARY special variable contains an object reference to the current library.
Format

$LIB{RARY}

Explanation

This current library is the one used for naked lookups and is always used unless another
library is specified explicitly. $L IBRARY isuseful in sending messages to the current
library.

$LIBRARY can be set to another library OID or name. The scope of the set isthe
duration of the current method execution context.

Comments

In many cases, the Main library is the default library. However, it is possible to change
libraries from EsiObjects, which changes the value of $L1BRARY .

Related
Message Syntax
$Library function

The following code sends a message to the library object OID bound to $L IBRARY to
get an object referenceto aclass Writer if one isimplemented in the current library. If
not, the current code context is exited by QUIT.

SET TOW i terd ass=$LI BRARY. Fi ndCd ass(Nanme: "Witer")
QU T: T9Viterd ass=""

The following code sets the Special Variable $LIBRARY to the "TestLibrary" name.

SET $LI BRARY="Test Li brary"

Specia Variables 153

$LOCALOBJECTS

The $SLOCALOBJECTS special variable returns a pointer to a collection that contains
session specific objects stored as semi-persistent, that is, stored in globals that should be
killed by system.

Format
$LOCALOBJECTS
Explanation

$LOCALOBJIECTS is provides access to those objects that should be destroyed by the
system.

Comments
$LOCALOBJIECTSiis used for debugging purposes.

It is used by the EsiObjects Object Browser to expose local objects.
Related

Specia Variables 154

$MAXNUM

The SMAXNUM specia variable contains the highest numeric value that can be
represented safely by the underlying M platform.

Format

SMAXNUM

Explanation

Attempts to handle numeric values greater than the highest numeric value supported on
the underlying M platform are likely to result in an error.

Comments

Generally the underlying platform represents the number contained in $M AXNUM using

exponential notation. Any number of significant digits can therefore be lost in the
process. Adding or subtracting 1 to SMAXNUM can simply return SMAXNUM.

Related

SMINNUM specid variable
Examples

The following example creates a numeric integer T%Middle that is directly between 0
and SMAXNUM.

SET T%M ddl e=$MAXNUM 2

Specia Variables 155

$MEMORYOBJECTS

The SMEMORY OBJECT S special variable produces an object pointer that provides a
root context for all top-level objects stored within local memory for a session.

Format
$SMEMORYOBJECTS

Explanation
Comments

These objects are created when the share=0,child=0 keywords are used on the CREATE
command.

The objectsreside in the local store.

Used by the EsiObjects Object Browser to display the objects.

Related
CREATE command

Specia Variables 156

SMAXSTR

The SMAXSTR special variable returns the maximum length of a string that can be
stored at a global node for the underlying M platform currently connected to.
Format

SMAXSTR
Explanation

Attempts to create strings that exceed the value of SMAXSTR will result in an error.
Examples

The following example checksto seeif a string created by concatenating the contents of
two variables exceed the maximu allowed length.

| F $Lengt h(T%ar t 1) +$Lengt h(T%ar t 2) >$MAXSTR

Specia Variables 157

$MESSAGE

The $MESSAGE special variable contains a string naming the current method that was
specified when the message was sent.

Format

SMESSAGE

Explanation

The $M ESSAGE special variable contains a string naming the current method, as
specified when the message was sent. Thisis the same as the name of the current method
unless an alias was used or interception has occurred. This special variable can be useful

in the context of intercepting code, code referenced by an alias, or code executed with the
XECUTE command that needs to behave differently for different methods.

Comments

The value of $M ESSAGE is not guaranteed to be the same as the name of the current
method. For example, it is possible for amethod to be known by an alias.

Examples

The following example sends the FindAll message to $SEL F if the current method was
referenced as Find by the caller.

| F $MESSAGE="Fi nd" DO $SELF.FindAll QU T

Specia Variables 158

$MINNUM

The $SMINNUM special variable contains the highest numeric value that can be
represented safely by the underlying M platform.

Format

$MINNUM
Explanation
The $SMINNUM specia variable contains the lowest numeric value that can be

represented by the underlying M platform without equaling 0. Attempts to handle
numeric values between this amount and O are likely to be rounded down to O.

Comments
Generally the underlying platform represents the number contained in $MINNUM using
exponential notation. Therefore, any number of significant digits can belost in the

process. Multiplying $M INNUM by a positive number between 1 and 2 can simply
return SMAXNUM .

Related

SMAXNUM specia variable
Examples

The following example creates a numeric integer T%Middle that is equal to the product
of SMAXNUM and $SMINNUM.

SET TY%M ddl e=$M NNUM $MAXNUM

Specia Variables 159

$PARAMETERS

The $SPARAMETERS specia variable contains the compiled parameter list for the
current method call.

Format
$PARAM{ETERS}
Explanation

The compiled parameter list cannot be displayed because it might contain control
characters. The SPARAMETERS specia variable is primarily useful in parameter list
indirection.

Related

Indirection

$PARAMETERLIST specia variable
Examples

In the following example, the parameter list sent to this method is sent along on acall to
the Revoke method and represents del egation.

GOTO T%bj ect 22. Revoke @PARAVETERS

Specia Variables 160

$PARAMETERLIST

The $SPARAMETERLI ST specia variable returns a string containing the parameter list
as specified when the current method was called.

Format
$PARAMETERLIST

$PARALIS

$PRMLIS
Explanation

In contrast with the string returned in the SPARAMETERS specia variable, thisstring is
returned in programmer-readable form.

Comments

This variable contains a programmer-readabl e string copy of the parameter list used to
invoke the current method. It is useful in testing and debugging only and is not to be used
for parameter list indirection.

Related

SPARAMETERS special variable
Examples

The following example displays the parameter list used to invoke the current method.

DO Assert.$ENVI RONMENT("Param |ist: "_$PARAMETERLI ST)

Specia Variables 161

$PEERS

The $PEERS special variable produces a pointer to the collection of peer (sibling)
objects of the current objects execution context.

Format

$PEERS
Explanation

The $PEERS collection contains all the peers or siblings to the current objects context the
special variable is executed within.

Comments
The $PEERS variable is used to access the peers objects.

It is used by the EsiObjects Object Browser to display all peers of the current object
context.

Related
$CHILDREN special variable

SCHILDCNT special variable
SLASTCHILDID specia variable
$SELF special variable

CREATE command
Examples

Specia Variables 162

$POINTER

The $POINTER specia variable contains a pointer to the location of the current object.
Format

$POINTER
Explanation

The $POINTER specia variable returns a namevalue appropriate to use in variable name
indirection or to use with the SQLENGTH and $QSUBSCRIPT functions. Specia
privileges are required to compile code that contains this special variable.

Comments
Keep the following points in mind when using the $POINTER specia variable.

» Directly accessing the global structure of an object is a serious violation of its
encapsulation.

* You must have the proper privilegesto use the $POINTER special variable.

» Thisspecia variableis not recommended for general use in EsiObjects.
Related

SNAME function
$OIDPTR function
$PTROID function
$QLENGTH function

$QSUBSCRIPT function
Examples

The following code uses $POINTER and the LOCK command to lock an object.

LOCK +@PO NTER

Specia Variables 163

$POOL

The $POOL special variable contains the name of the default name pool.
Format

$POOL
Explanation

The value contained in $POOL is used in a NamePool reference where no name pool is
explicitly defined. The construct SET $POOL is used to change the default NamePool.

Comments

A name pool reference that does not explicitly specify the pool isidentical to one that
specified $POOL . One purpose of $POOL isto compare it to some known pool to see if
that pool is the default.

Related

$SY SPOOL specia variable
Examples

The following example references a value ESI$MainDirectory in the default name pool
$POOL.

SET T%-i | e=No{ $POCL) ESI $Mui nDi r ect ory_" OUTPUT. TXT"

Specia Variables 164

$PRINCIPAL

The $PRINCIPAL special variable returns the device identifier of the principal (or
login) device.
Format

$P{RINCIPAL}
Explanation

If the current process is a background process not tied to any device, $PRINCIPAL
returns NULL ("").

Comments

The specia device identifier (0) can also be used to refer to the principal device.
However, $PRINCIPAL is more informative.

Related
$DEVICE special variable

$1O specia variable
Examples

The following example uses the truth-value of $DEV I CE to determine whether an error
has occurred on the current device. If so, it uses $1 O to determine the device identifier,
uses $PI ECE to get the three components of $DEVICE, and displays these values on the
principal login device $PRINCIPAL .

IF $DEVICE DO ; Display error text

. SET T%Code=$PI ECE($DEVI CE, ", ")

. SET T%Status$PlI ECE($DEVI CE, ", ", 2)

. SET T%Text $PI ECE($DEVI CE, ", ", 3, 999)

. DO $ENV. Qut put ("Error on device "_$1 0O

. DO $ENV. Qut put ("Error code="_T%Code_", Status="_T%st at us)
. DO $ENV. Qut put ("Error text="_T%ext)

Specia Variables 165

$PRIVILEGED

The $PRIVILEGED specia variable returns 1 if the current message is privileged.
Format

$PRIV{ILEGED}
Explanation

Compilation of the method determines this value. It can be changed locally by requesting
privileges from the environment. If privileges are granted, the value of $PRIVILEGED
is1 (true). Privileged methods can use various lower-level internal functions.

Comments
Keep the following points in mind when you use the $PRIVILEGED specia variable:

» Privileges are not required to use this special variable.

* Privileged methods are allowed to perform certain lower-level operations that are
unavailable to nonprivileged functions. However, many of these operations are not
recommended for general used by EsiObjects programmers.

Examples

The following example executes a subroutine and exits if the current method does not
have any privileges.

| F ' $PRI VI LEGED DO NoPriv QU T

Specia Variables 166

$QUIT

The $QUIT special variablereturns 1 if the current code context is a subroutine, or O if
the current code context is an extrinsic function.

Format
$Q{UIT}
Explanation

The $QUIT special variableis useful for testing and debugging, or for creating a body of
code that can be accessed either as an extrinsic function or as areturn value.

Comments
Keep the following points in mind when you use the $QUIT special variable:
* Ingenerdl, it is not recommended to create a single body of code that can be called

either as a subroutine or as an extrinsic function. Create two bodies of code that
share their common functionality in one or more common subroutines.

* In some programming contexts such as error trapping, it may be necessary to use

$QUIT.
Related

QUIT command
Examples

The following example uses $3QUI T to exit with areturn value if the context is an
extrinsic function, or to exit without areturn value if the context is an extrinsic function.

IF $QUIT QU T T%Ret urnVal ue
ELSE QU T

Specia Variables 167

$REFERENCE

The $SREFERENCE specia variable exposes the internal reference count on an object.
Format

$REFERENCE
Explanation

Occasionally an object may collaborate with one or more other objects, providing a
servicefor aslong asit is needed. Each user of the service may try to destroy the service
object after it has finished with it. Under these circumstances, if an object succeeded in
destroying the object, subsequent objects making reference to it would fail if they did not
constantly check for its existence. To make sure that an object remains alive until the last
destroy action is applied; EsiObjects implements an internal reference counter. When the
object is created by the CREATE command, the reference count isinitialized to one (1).
When aDESTROY command is applied, it will decrement the counter. When the count
goes below 1, the object will be destroyed. To make sure the object stays around, each
using object would apply the PRESERVE command to the object. This command
increments the count by one. Once it has finished with the object, it would apply the
DESTROY command which will decrement the count by one. This preserves the object
so that it isavailable to al other objects and makes it available to the creating object for
destruction.

Comments
Keep the following points in mind when you use the SREFERENCE special variable:

* Thevaueof $SREFERENCE should aways be greater and or equal to one.

» Within an objects method or property, the SREFERENCE can be set to another
value.
Related

CREATE command
DESTROY command

PRESERV E command
Examples

The following example show how the SREFERENCE can be used.

Do $Env. Assert (“Object “_T%ject. Nane_" has “_$Reference_” references to
i t . H)

This example show how the SREFERENCE can be set

Set $Ref er ence=$Ref er ence+1

Specia Variables 168

$RETURN

The $SRETURN specia variable contains the val ue that the current method returns on
exit.

Format

SRET{URN}

Explanation

Initially when amethod is called, the value of SRETURN is generally set to NULL ("").

The SET $RETURN construct is used to change the return value from its default value.
Its value is scoped inside the current method call.

Comments
Keep the following points in mind when you use the SRETURN specia variable:

* Thevaue of SRETURN aways defaultsto NULL ("), except in an object's
special Destroy method, when it defaultsto 1.

e Inavaue-returning method, the construct SET $RETURN is used to specify a
different return value.
Related

Method structure

DESTROY command
Message Syntax
Examples

The following exampl e sets the value of $SRETURN to 1. The current method returns 1
unless the value of SRETURN is changed inside this method before its final QUIT
ocCCurs.

SET $RETURN=1

Specia Variables 169

$ROOTOBJECTS

The $SROOTOBJECT S special variable points to a collection of objects that are outside
the context of the session.

Format

$ROOTOBJECTS

Explanation

The $ROOTOBJECTS collection contains objects that are created outside of the sessions
context.

Comments

Most root objects are protected and to see the objects you must have the proper

privileges. Privileges are determined by the EsiObjects startup command qualifier used
(/ESI, /ADMIN or /DEBUG) or the Security levels assigned to you logon username.

Related

CREATE command
Examples

Specia Variables 170

$SELF

The $SEL F specid variable returns an object reference to the current object.
Format

$SELF
Explanation

Primary use of the $SEL F specia variableisfor an object to send a message to itself or
to refer to its own property. It can also give other objects a handle to themselves, which
can be used in future messaging dialog.

Comments
Keep the following points in mind when you use the $SEL F special variable:

* Itispossiblefor an object to destroy itself using the DESTROY command.
However, any subsequent references to $SEL F or instance variables before the
method exits with QUIT causes an error.

e Thesyntax DO $SUPER.L abel is equivalent to DO $SEL F.*L abel.
Related

Message Syntax

$SUPER specia variable
Examples

The following exampl e creates a new object of class Button whose Owner equals $SELF.

CREATE T%But t on=But t on(Text : "OK", Oawner : $SELF)

Specia Variables 171

$SHAREDOBJECTS

The $SHAREDOBJECTS specia variable that points to a collection of all shared objects.
Format

$SHAREDOBJECTS

Explanation

Shared objects that are created with the CREATE command keyword Share=1 (as
opposed to Base, Fixed or Domain).

Comments

Shared objects reside in the "V ESoshob global.

The EsiObjects Object Browser uses this variable to access the shared objects.
Related

CREATE command
Examples

Specia Variables 172

$STACK

The $STACK specia variable returns the number of stack frames currently on the M
process stack.

Format

$ST{ACK}

Explanation

The $STACK specia variable always contains an integer value of O or greater.
Comments

Keep the following points in mind when you use the $STACK specid variable:
» Itisequivaent to the function call $STACK (-1).

e $STACK function calls return information about the current M process stack level
if the $STACK special variableisthe first argument of $STACK.
Related

$STACK function
Examples

The following example displays information about the current error condition for every
stack framein $STACK that contains error codes. Note the use of the $STACK specia
variable on the third line to determine the total number of stack frames.

DO $ENV. Qut put (" Process Type: "_$STACK(0))

DO $ENV. Qut put ("Franmes on Stack: "_$STACK)

FOR T%.0op=1: 1: $STACK | F $STACK(T%.oop, " ECODE")' ="" DO
. DO $ENV. Qut put ("")

. SET T%Code=$STACK(T%. oop, " ECODE")

. SET T%.i ne=$STACK(T%.oop, " PLACE")

. SET Todext =$STACK(T%.00p, " MOODE")

. DO $ENV. Qut put (" Errors at Frame "_T%oop_": "_T% ode)
. DO $ENV. Qut put (" Execution Location: "_T%.i ne)
| F T9%ext' ="" DO $ENV. Qut put (" " _T9dext)

QT

Specia Variables 173

$STORAGE

The $STORAGE specia variable contains the number of free characters available for
use in the partition of the current process.

Format
$S{ TORAGE}
Explanation

The method of calculating this value depends on the underlying M platform. Its behavior
iseven less clear in EsiObjects because some transient objects are stored in the partition.
However, many transient objects are not stored in the partition.

Comments
Keep the following points in mind when you use the $STORAGE special variable:

» ltsbehavioral characteristics vary depending on the underlying M platform.

» EsiObjects stores some nonpersistent objects globally and stores othersin the
partition.
Related

KILL command
SET command
Examples

The following example calls the LOADARR subroutine if the value of $STORAGE is
greater than 10240.

| F $STORAGE>10240 DO LQOADARR

Specia Variables 174

$SUPER

The $SUPER specia variable contains an object reference to the superclass method and
property implementations of the current object.

Format

$SUPER
Explanation

The $SUPER specia variable is used generally as a messaging target to inherit the
superclass implementation of the current method or public label.

Comments

The syntax DO $SUPER.Method is equivalent to DO $SELF.* Method.
Related

Message Syntax
$SELF special variable
Labelsin EsiObjects

Label Inheritance
Examples

The following example delegates to the method ThisMethod as implemented by the
superclass.

GOTO $SUPER. Thi sMet hod

The following example delegates to the public label ThisLab asimplemented by the
superclass implementation of the current method.

GOTO *Thi sLab”$SUPER

Specia Variables 175

$SYSPOOL

The $SY SPOOL special variable contains an object reference to the system name pool.
Format

$SY SPOOL

Explanation

The $SY SPOOL special variable is used in name pool references to names in the system
name pool where various system objects are shared.

Comments

The $SY SPOOL special variable returns the system name pool and the $SPOOL special
variable returns the current default name pool. The two are not always identical.

Related

$POOL special variable
Examples

The following exampl e references a value ESI$MainDirectory in the system name pool
$SY SPOOL.

SET T%-i | e=NY{ $SYSPOOL) ESI $Mai nDi rect ory_" OUTPUT. TXT"

Specia Variables 176

$SYSTEM

The $SYSTEM specia variable returns avalue that uniquely represents the system.
Format

$SY{STEM}

Explanation

The $SY STEM specia variable returns a value that uniquely reprents the underlying M
system, which represents the domain of concurrent processes for which $JOB is unique.

Comments
$SYSTEM isof theform

V.S

where V isavendor Id (48 = ESI Technology Corp), and Sisaglobally unique system
ID.

Related
$JOB special variable

Specia Variables 177

$TEST

The $TEST special variable returns the value of the test flag.
Format

$T{EST}

Explanation

The $TEST special variable returns the value of the test flag. The test flag is set by an IF
command, atimeout, or by the DESTROY command.

Comments

Keep the following points in mind when you use the $STEST specia variable:

The argumentless DO command places $TEST on the process stack before
invoking a block, causing its value to be restored when the block is exited.

The IF and DESTROY commands affect the $STEST special variable, and any
time atimeout is encountered in the JOB, LOCK, OPEN, or READ commands.
Other conditional operations, such as postconditionals and $SELECT, do not
affect STEST.

$TEST isscoped inside a method context. Calls to other objects or methods never
modify $TEST. However, subroutine calls and the XECUTE command can
modify $TEST.

Any form of DO that specifies alabel and/or routine name does not place $TEST
on the process stack. When execution returns from the subroutine, any changesto
STEST aretill in effect.

| F | %dei ght' >l %W dt h DO MODI FY
ELSE DO $ENV. Qut put ("G eater")

The previous example is extremely risky, and hard to evaluate. Without looking at the
subroutine MODIFY, it isimpossible to determine under what circumstances the EL SE
command on the second line will be executed. Note the following:

|%Height is greater than 1%Width. The | F on the first line sets $TEST to 0, and
execution drops down to the second line. Because $TEST is 0, the EL SE executes
the SENV.Output.

|%Height is not greater than 1%Width. The IF on the first line sets STEST to 1
and executes the DO. The following can occur inside the subroutine:

The subroutine MODIFY does not modify $TEST. When execution returns,
$TEST 4ill equals 1 from the IF on the first line, and the EL SE does nothing.

The subroutine MODIFY does modify $TEST, and when it exits STEST equals 1.
The EL SE on the second line does nothing, based on the most recent $TEST
operation.

Specia Variables 178

» The subroutine MODIFY does modify $TEST, and when it exits $TEST equals 0.
The EL SE on the second line executes the $SENV.Output, based on the most
recent $TEST operation.

Clearly this situation can lead to unexpected results. The examples section presents a
specific solution to this problem using an argumentless DO.

Related
DESTROY command

DO command
ELSE command
|F command
JOB command
LOCK command
OPEN command
READ command

$SELECT function
Examples

The following exampleillustrates a typical programming error because $TEST islikely
to change between the | F and the EL SE. Note that in some cases DO does not stack
$TEST.

| F 19%ei ght' >l %N dt h DO TEST
ELSE DO $ENV. Qut put ("G eater")

QT
TEST ; Subroutine containing | F and ELSE
| F | %ei ght =I %W dt h DO $ENV. Qut put (" Equal ")

ELSE DO $ENV. Qut put ("Not Greater™)
QT

In the previous example, assume that 1%Height=5 and 1%Width=10, the IF command on
thefirst line sets $STEST to 1 and the DO calls TEST. Inside TEST, the | F sets $TEST to
0, and the EL SE executes the SENV.Output. The QUIT then exits TEST. The EL SE on
the second line checks $TEST (which is now 0) and executes the $ENV .Output. The
first line of output is Not Greater and the second line is Greater. Thisis probably not what
the programmer intended.

A number of language elements (for example, object-with-service references, extrinsic
functions, and the argumentless DO) place $TEST on the process stack. The following
exampl e solves the problem shown in the previous example with the argumentless DO:

Specia Variables 179

| F 1 9%-ei ght' >l %W dth DO

. | F 1%ei ght =1 9\ dt h DO $ENV. Qut put ("Equal ") QU T
. DO $ENV. Qut put ("Not Greater")

ELSE DO $ENV. Qut put ("Greater™)

QUT

The following example uses $SEL ECT and is functionally equivalent to the previous
example, except that it does not modify $TEST.

DO
$ENV. Qut put ($SELECT(| %ei ght > oW dt h: "Greater”, | %Hei ght =1 9% dt h: "Equal ", 1: "No
t Geater"))

The following example uses the DESTROY command to destroy the Window object
referenced by the symbol T%Window, causing the window to disappear from the display
and all of itsinstance variables to be removed. The EL SE command references $TEST
to determine whether the attempt was successful.

DESTROY TN ndow
ELSE DO $ENV. Assert (" DESTROY Failed!")

The IF command with no arguments is the opposite of EL SE because it |ets execution
pass to the rest of the commands on theline only if STEST is 1. Thisform is most
commonly used after language elements (other than | F) that modify $STEST (for
example, timeouts or DESTROY).

DESTROY T%bj ect 12
IF DO $ENV. Qut put (" Cbj ect was destroyed.") QU T

In the previous example, the SENV.Output and QUIT commands are performed only if
DESTROY set $TEST to 1 (in other words, the object was successfully destroyed).

The following example illustrates the repeated use of incremental L OCK with atimeout
to provide feedback to the user that an attempt to lock the node isin progress. If the lock
does not complete normally within 30 seconds, the process is abandoned.

DO $ENV. CQut put (" Locki ng...")

FOR T%.oop=1:1: 10 LOCK +*XYZ(0):3 IF QU T

ELSE DO $ENV. Qut put ("Node is busy. Aborting.") QU T
SET (T%Ent r yNunber , ~XYZ(0)) =~ XYZ(0) +1

LOCK -19%.i st (0)

SET AXYZ(T%Ent r yNunmber) =T%Ent r yVal ue

Specia Variables 180

$X

The $X special variable returns the output column position of the current device.
Format

$X
Explanation
The $X specia variable returns the output column position of the current device. Control

sequences that affect the output position cannot accurately update $X. However, you can
use the construct SET $X to correct such problems.

Comments
Keep the following points in mind when you use the $X specia variable:

» Control sequences that affect the output position cannot accurately update $X.
Therefore, it is advisable to use caution when interpreting the contents of this
special variable. However, you can use the construct SET $X to correct such
problems.

* $Xissensitiveto the current device. Therefore, itsvalue islikely to change
whenever the USE command is issued.
Related

USE command
$Y specia variable
Examples

The following exampl e sets the value of $X to reflect the current column position and $Y
to reflect the current row position.

SET $X=T% ol umm, $Y=T%0ow

Specia Variables 181

Y

The $Y specia variable returns the output row position of the current device.
Format

Y
Explanation
The $Y specia variable returns the output row position of the current device. Control

sequences that affect the output position cannot accurately update $Y . However, you can
use the construct SET $Y to correct such problems.

Comments
Keep the following points in mind when you use the $Y specia variable:

» Control sequences that affect the output position cannot accurately update $Y .
Therefore, it is advisable to use caution when interpreting the contents of this
special variable. However, you can use the construct SET $Y to correct such
problems.

* Y issensitiveto the current device. Therefore, itsvalue islikely to change
whenever the USE command is issued.
Related

USE command
$X specia variable
Examples

The following exampl e sets the value of $X to reflect the current column position and $Y
to reflect the current row position.

SET $X=T% ol umm, $Y=T%0ow

Specia Variables 182

$ZVIRDATA

The $ZVIRDATA specia variable contains the substantive data represented by a virtual
object, which must consist of asingle string value.

Format
$ZVIRDATA
Explanation

The $ZVIRDATA specia variableis used to establish a basic object context. The
CREATE method can set $ZVIRDATA to establish specific context information.
$ZVIRDATA cannot be set outside the context of the CREATE command.

Comments

Although it is possible to send messages to virtual objects, they are not really objects as
such and do not have instance variables. They are exceptionally lightweight, however,
and useful for representing external data as objects.

Related
CREATE command

DESTROY command
Examples

The following example sets the object's data portion to 1.

SET $ZVI RDATA=1

Functions 183

Functions

Functions 184

$ASCII

The $ASCI | function returns the ASCII code number of a single character inside a string.
Format

SA{SCII} (expr {,intexpr})

Arguments

expr - a string expression containing the character whose ASCII code is to be returned.
intexpr - an integer defining the position of the target character in the string.
Explanation

The $ASCI | function returns the ASCII code value of asingle character inside astring. If
no character position is specified, the ASCII code of the first character inthe string is
returned. The character position is always interpreted as an integer. Decimal values are
truncated.

By convention in EsiObjects, the special value -1 is used as the ASCII code of an empty
string. If a position beyond the string's length or a number lessthan 1 is specified for the
character position, then —1 is also returned.

Comments
Keep the following points in mind when you use the $ASCII function:

e S$ASCII isthe opposite of SCHAR. For any integer T%Integer in the range —1 to
255, the following expression should always return the value of T%lnteger:

$ASCI | ($CHAR(T% nt eger))

e S$ASCII isrelated to SEXTRACT. Note the following:

$ASCI | (TSt ri ng, T% nt eger)

* The previous exampleisfunctionally equivaent to the following example:
$ASCI | (SEXTRACT(TYBt ri ng, T% nt eger))

e S$ASCII isoften useful with the SKEY special variable because it contains control
characters that may need to be converted back to their ASCII code values.
Related

$CHAR function
$EXTRACT function
SKEY specid variable

Functions 185

Examples

The following example displays the code of the first character in the string T%String to
the Output window:

SET T%&Gtri ng="Esi Obj ects"
DO $Env. CQut put ($ASCI | (TUSt ri ng))

Results: 69

The following example displays the code of the fifth character in the string T%String to
the Output window:

SET T%&Gtri ng="Esi Obj ects"
DO $Env. Qut put ($ASCI | (TSt ri ng, 5))

Results: 98

The following example displays the code of the 12th character in T%String to the Output
window, but because there are only 11 characters the return value is—1:

SET T%Stri ng="Esi Obj ect s"
DO $Env. Qut put ($ASCI | (T¥St ri ng, 12))

Results: -1

The following example uses $ASCI |, SLENGTH, and SET $PIECE to create an
indirectible string to generate the contents of T%String:

SET T%Resul t

FOR T9%.oop=1: 1: $LENGTH(T¥St ri ng) DO

. SET $PI ECE(T%Resul t, T% oop) =$ASCI | (T¥St ri ng, T%.oop)
SET T%Resul t ="$CHAR(" _T%Result_")"

Note: The following comments and code examples assume 10 to traditional M Input/Output
devices. It is assumed that a command window is present for this exercise since
traditional M I/O commands are being used.

Functions 186

The following example uses $KEY to determine whether or not the last READ was
terminated by a control string. Note that the values of $KEY and $|O are recorded before
the USE command is issued because this command changes the current device. $ASCII is
used to convert control characters back into numeric codes.

| F $KEY' ="" DO
SET T%Control Stri ng=$KEY
SET T9%evi ce=3$1 O
USE $PRI NCI PAL
. WRITE "The last read on ", T%evice," was term nated by ASCI|"
FOR T%.oop=1: 1: $SLENGTH(T%Cont r ol Stri ng) DO
| F T%. o00p>1 WRITE "+"
. WRITE $ASCI | (T%Control Stri ng, T% oop)

USE T%bDevi ce
QUT

Functions 187

$ASNVECTOR

The $ASNVECTOR function returns the assignment vector of avariable.
Format

$ASN{VECTOR} (namexpr {,subexpr {,typexpr}})
Arguments

namexpr ::= expr V name

The first argument is a string containing the name of the variable whose assignment
vector isto be returned.

subexpr ::= expr V subscriptlist

The second argument is either the null string (") or a string containing a complete
subscript list, including the surrounding parentheses.

A Accessor

C Class

CN Constant

G Global

I Instance
typexpr ::=expr V L Local

N NamePool

@) Object Name

P Parameter

R Relative/Region

S System

U Universal

The third argument is a specia code indicating the type of the variable whose assignment
vector isto be returned.

Explanation

Note: The SASNVECTOR function is a privileged function and is not recommended for
general use.

The assignment vector is an indirectible string that can be used to directly access a
symbol. The behavior of lookup and assignment operations performed on assignment
vectors vary according to object internals. Special privileges are required to compile code
that uses SASNVECTOR.

Functions 188

Comments
Keep the following points in mind when you use the SASNVECT OR function:

» Privileges are required to compile EsiObjects code that contains SASNVECTOR.

» Many operations on assignment vectors yield different results than the same
operations performed on the actual symbols. For example, a SET command
performed on an instance variable can invoke the target object's Assign accessor,
whilea SET command performed with name indirection on that instance variable's
assignment vector does not.

Related

$LOOKUP function
$OIDPTR function
$PTROID function

$WALK function
Examples
The following example gets the assignments vector to the instance variable 1%Height and

setsits value to 0 using indirection. The preferred method for doing thisisto instead set
the instance variable's value directly.

SET T%Handl e=$ASNVECTOR(" Hei ght","","1")
SET @%landl e=0

Functions 189

$ASSOCIATE

The $ASSOCIATE function establishes the current object context.
Format

$AS{SSOCIATE} (oref)
Arguments

oref - an object reference to the object to be tested for class membership.
Explanation

The $ASSOCIATE function is used to associate an object context when none exists.
This allows access to the instance variables of the object.

Y ou can use the $ASSOCIATE function with the $GETENTRY REF function to alow
nonobject code to invoke object methods.

Comments
Keep the following points in mind when you use the $ASSOCIATE function:

e Can only be used when no context exists.

* Must be used in amethod of the target object.
Related

M ethod structure

Message Syntax
$GETENTRY REF function
Examples

The following example shows a callback function that trandates an 1D number to an
object associated to that object and firesaclick event.

CLICK(ID) ;
SET T%bj ect. A="Reg(1 D)
| F ' $ASSCCI ATE(I D) DO $Env. Qut put ("Error")
Event CLICK

Functions 190

$CALLBACK

The $CALLBACK function returns a callback frame identifier used to call back to a
label within the current method and object.

Format

$CALL{BACK]} (label {,typecode {,optionscode}})
Arguments

label - alabel or public label asit would be referenced from within the current code
context.

typecode - anumeric code value interpreted as follows:

Type Description Code

Original Callback to creator's stack frame. 0

Capture Callback capturing creator's method- 1
related symbols.

Initialized Callback that starts with a clean 2

variable context.

optionscode - an integer interpreted according to bit value

Type Description Bit Types

Persistent Survive for the duration of 0 1,2
the creating object.

Additive Preserve variable state 1 1,2
between calls.

Explanation

Objects can create callbacks to specific labels inside the current method. This allows
external objects to directly invoke a specific label in a specific method. The code being
invoked runs in the context of the object that created the object. Callbacks can be invoked
as DO or GOTO arguments or as extrinsic functions.

For more information about callbacks, see Callback Syntax section of this guide.
Comments

Keep the following points in mind when you use the SCALLBACK function:

» Thecalback frame identifier can be used to call externaly into the specified
context.

* Usethe DO form of a callback for output, looping, and update functions.
* Usethe GOTO form for delegation and error handling.

» Usetheextrinsic function form of a callback for searches and property lookup.
Related

Message Syntax
SEXTCALLBACK function

Functions 191

$FREECB function
Examples

The following example returns a callback to MODIFY .

SET T%Cal | Back=$CALLBACK(MODI FY)

The following example returns a callback to DELETE. The callback starts with a clean
variable context and is persistent and additive.

SET T%Cal | Back=$CALLBACK(DELETE, 2, 3)

Functions 192

$CHAR

The $CHAR function returns a string containing the characters specified by its argu-
ments.

Format

$C{HAR} (L code)
Arguments

code

An expression interpreted as an integer whose val ue ranges between —1 and 255, used to
specify the value of a single character in the string.

Explanation
The $CHAR function returns a string containing the characters specified by a series of

numeric ASCII codes. The value —1 represents the null string ("), which contains no
characters.

Comments
Keep the following points in mind when you use the $CHAR function:

» Itisnot legal to store control characters directly in the text of EsiObjects code. In
many cases, you can use the SCHAR function to overcome this limitation.

¢ $CHAR isthe opposite of $ASCI|. If the string in T%Char is0 or 1 characters,
the following expression always returns the value of T%Char:

$CHAR($ASCI | (T%Char))

Note: The following comments and code examples assume 10 to traditional M Input/Output
devices.

* Thesyntax WRITE *code is sometimes an aternative to using $CHAR. The
following two lines of code are functionally equivalent:

VR TE $CHAR(13, 10)
WRI TE *13, *10

* Insome cases, using the WRITE command to send control strings with $SCHAR
can result in changes to the current output position that can render the values of $X
and $Y inaccurate. Control mnemonics and format control parameters do not have
this limitation. For example, the following WRITE command is equivalent to the
two previous examples except for its effect on $X and $Y.

VRI TE !

 TheREAD * variable form of the READ command produces an ASCI| code
number that can be converted back into an ASCII character with SCHAR.
Related

WRITE command

Functions 193

$ASCII function
$X special variable

$Y special variable
Examples

The following example generates the string ABC by specifying the ASCII codes 65, 66,
and 67.

DO $Env. Qut put ($CHAR(65, 66, 67))

Resul t: ABC

The following exampl e sets the value of the service variable T%Code to the ASCII Tab
character (ASCII code 9).

SET T%Code=$CHAR(9)

Note: The following comments and code examples assume 10 to traditional M Input/Output
devices.

The following example accepts input from the current device as an ASCII code and
convertsit to a character value. Both values are used when calling the subroutine
HANDLE.

READ * T%Code
SET T%Char =$CHAR(T%Code)
DO HANDLE(T%Code, T%Char)

Functions 194

$CLASSOID

The $CL ASSOI D function returns the full object reference of aclass, given its name as
input.

Format

$CLASSOID(expr)

Arguments

expr ::= expr V FullClassName — An expression whose value is the full library$class
name.

Explanation

Thisfunction is useful whenever it is necessary to transform a string containing the name
of aclassinto an object reference. The function will always return avalid OID even if the

class does not exist. The return value is not validated. It is up to the programmer to
validate the existence of the class.

Related
$OIDPTR
$PTROID
Examples

The following chained example first transforms a full class reference into the class object
reference. The OID isthen used to get the classes parent OID. The parent OID is used to
retrieve the parent classes name.

SET T%ar ent =$Cl assO D("Base$Set ") . Par ent . Nane

Functions 195

$COPY

The $COPY function copies the current objects instance table of the current object into
the destination array specified by its argument.

Format
$COPY (glvn)
Arguments

glvn - the array into which the current object's instance table is to be copied.
Explanation

Note: Because special privileges are required to compile code containing the $COPY
function, it is not recommended for general use.

The $COPY function initializes the destination array prior to copying. Sparse lookups
are not performed as part of this process.

Because $COPY initializes the destination array prior to copying the object's instance
table, its effect can be viewed as a combination of the KILL and MERGE commands
(except that the Kill accessor and Assign accessor methods are never invoked).

The $COPY function returns 1 if the copying operation was successful, O if it was not.
Comments

Keep the following points in mind when you use the $COPY function:
» Copying an object's instance table into an array is risky, and the results are not

guaranteed to be consistent. For example, object references to internal objects
cannot be updated to point into the destination array.

e Sparse lookups are not performed by $COPY . This means that instance variables
that theoretically exist but have not been specifically created in the object's
instance table cannot be found in the destination array following $COPY .

Related

KILL command
MERGE command
Examples

The following example copies the current object's instance table into T%Result, exiting
from the current context if the operation was not successful.

| F ' $COPY(To%Result) QUI T

Functions 196

$DATA

The $DATA function checks the structural existence of a variable name or array node.
Format

$D{ATA} (glvn)
Arguments

glvn - avariable name or array node whose structural existence is to be checked.
Explanation

The $DATA function checks the structural existence of a variable name or array node. It
answers two questions at once:

» Doesthe symbol contain avalue (isit safe to reference the symbol without
$GET)?

* Doesthe symbol have array children below it?

The argument of $DATA isavariable name or array node. It always produces one of
four return values:

0 The symbol is undefined. It has no value and no array
descendants.

1 The symbol contains a value, but has no array descendants.

10 The symbol contains no value, but has array descendants.

11 The symbol contains a value, and has array descendants.

Functions 197

Comments
Keep the following points in mind when you use the $DATA function:

* The$DATA function determines the structural existence of a symbol or array
node. It does not determine whether a variable contains a handle to an object that
currently exists. However, the $EXI ST function does have this capability.

» Oftenthe $DATA function is used to ask a more specific question about the
structural existence of an object. Using the example variable L%X, the following
questions can be asked in the following different ways:

General Question Examples

Is L%X defined in any way? IF $DATA(L%X)

Is L%X completely undefined? IF '$DATA(L%X)

Does L%X contain no value? IF $DATA(L%X)#10=0
IF $DATA(L%X)[0

Does L%X contain a value? IF $DATA(L%X)#10

IF $DATA(L%X)'[0
IF 11[$DATA(L%X)

Does L%X Have Array IF $DATA(L%X)>9
Descendants? IF SLENGTH($DATA(L%X))=2

Does L%X not have descendants? |IF $DATA(L%X)<10
IF $LENGTH($DATA(L%X))=1

* Usethe $DATA and $GET functions to interact with symbols that may or may
not contain avalue. In some cases, it is better to use $GET instead of $DATA,
while in other cases $DATA is preferable.

Related

CONTAINS ([) operator
EQUALS (=) operator
GREATER THAN (>) operator
LESS THAN (<) operator
MODULO (#) division operator
NOT (') operator

$EXIST function

$GET function
Examples
The following example assigns the value 100 to the variable T%Size if the instance

variable 1%Height contains no value, or assigns the value of 1%Height to T%Size if it
does contain avalue.

| F $DATA(| %ei ght) [0 SET T%Si ze=100
ELSE SET T%Si ze=I %dei ght

Functions 198

The following simpler example accomplishes exactly the same task (except that $TEST
is not modified):

SET TSi ze=$GET(| %-ei ght , 100)

In the following example, the current code body is exited if 1%Elements does not have
array children.

| F $DATA(| %l ement s) <10 QUIT

The following example, the WALK subroutine, traverses all the descendants of the
specified array node, displaying the nodes and their values on the output window. It uses
aFOR loop with SORDER to traverse the nodes, uses $DATA to determine whether a
given node contains data, and uses $NAM E to convert a subnode into aname value. This
name value is then used in name indirection as the argument of $DATA and is passed as
a parameter.

WALK(Node) ; Recursive traversal
NEW Sub, Dat aVal , NodeNane
| F $DATA(@lode) #10 DO $Env. Qut put (Node " =<"_@lode_">")
SET Sub=""
FOR SET Sub=$ORDER(@lode@ Sub)) QUI T: Sub="" DO
. SET NodeNarme=$NAME(@ode@ Sub))
. SET Dat aVal =$DATA(@odeNane)
. | F Dataval ' [0 DO $Env. Qut put (NodeNanme_" =<"_@\Node_">")
. | F DataVal >9 DO WALK(NodeNan®)
QT

The following example provides an alternative implementation of WALK. It uses
$DATA to display the root node if necessary, uses SLENGTH and $SEXTRACT to build
an array root, uses a FOR loop with SQUERY to traverse the array, and uses
$EXTRACT to determine the exiting condition. Inside the FOR loop thereisonly a
single instance of indirection with no arecursive call. Therefore, this example may run
faster.

WALK(Node) ; Nonrecursive traversal
NEW Root , Len
| F 11[$DATA(@lode) DO $Env. CQut put (Node_" =<"_@\ode_">")
SET Len=$LENGTH(Node) , Root =Node
| F $EXTRACT(Root, Len) =")" SET $EXTRACT(Root, Len)=","
ELSE SET Root=Root_" (", Len=Len+1
FOR S Node=$QUERY(@Node) Q $EXTRACT(Node, 1, Len)' =Root DO
. DO $Env. Qut put (Node_" =<"_@\ode_">")
QIT

Functions 199

$DELEGATE

The $DEL EGATE function is used to delegate the execution of a method or accessor to
another object that has the same protocol. The system automatically changes context to
the delegated object and all input parameters are pass.

Format

$DE{LEGATE} (oref)
Arguments

oref - an object reference to an object that the call will be delegated to.
Explanation

The $DEL EGATE function is used to pass all callframe information to another object
that has the same input specification. It isavery fast way to delegate responsibility to
another object. The receiving objects must have the same call interface. IN, INOUT and
OUT parameter keywords are honored.

Related
QUIT Command

SET Command
$CALLFRAME specid variable

Examples

Assume a dispatcher object recieves a message to send atruck to deliver a package. The input
parameters on the message call contain al the information needed to dispatch atruck to deliver a
package. The Dispatcher object hasalist of al driver objects. The dispatcher simply identifies the
dirver that is available and del egates responsibility to him by issuing a:

QUI T $DELEGATE(T%x i ver Ol D)
The system will switch context to the object identified by T%DriverOID and redirect all input
specifications to that object’s method.

$Delegate will invoke the current service with the current parameters on the requested object.
Should the delegating function need to alter the parameters being delegated it may do so by first
manipulating the current call frame using the $Callframe object.

Functions 200

$EXIST

The $EXI ST function determines whether or not an object exists.
Format

SEX{IST} (oref[, cnexpr])
Arguments

oref ::= expr V OID - object reference to an object that may or may not exist.

cnexpr ::= expr V classname - The optional name of the class of which the object may or
may not be a member.

Explanation
For the one-argument form, if the argument of $EXIST contains an object reference to an
object that currently exists, the function returns 1. If the object no longer exists, the

function returns 0. If the argument of $EXI ST is not an object reference, it returns B
(built-in datatype), which isinterpreted as O in a truth-value context.

For the two-argument form, the second argument must evaluate to a class. The full class
reference should be specified, that is, “library$class’. If the object is an instance of the
class, the $Exist function will return true (1).

Comments
Keep the following points in mind when you use the $EXI ST function:

e The3$DATA and $EXIST functions are related but are different. SDATA checks
for the structural existence of a symbol without referencing its value and $EX1ST
checksthe valueit is passed to determine whether it is an object reference to an
existing object.

* If theargument isasymbol that is not structurally defined (in other words, its
$DATA valueisnot 1 or 11), then an undefined variable error can occur.
Related

$DATA function
Examples
The following example makes sure that the object T%Window exists before sending it an
Activate message.
| F $EXI ST(T9W ndow) DO T9W ndow. Acti vate

The following example shows how to use $EXIST to determine whether the object in the
temporary symbol Unknown can be sent a Browse message (in other words, if it refersto
an existing object).

| F $EXI ST(T%Jnknown) DO T%Jnknown. Br owse

Functions 201

The previous code does not make any distinction between built-ins and invalid OIDs. The
behavior isidentical if the $EXI ST function returns B or O, which isin keeping with the
intent of the example.

The two argument form of the $EXI ST is used to determine whether an OID is
associated with a particular class. In the following example, if the object bound to the
T%OID variableisnot a“Base$Set” instance, then assert an error to the client.

| F * $EXI ST(T% D, "Base$Set ") DO $Env. Assert (“Ohj ect a Base$Set object.”)

Functions 202

$EXTCALLBACK

The $EXTCALLBACK function returns a callback frame identifier used in calling back
to alabel within any method of the current object.

Format

$EXTCALL{BACK} (methexp, labelexp, typecode {, optionscode})
Arguments

methexp ::= expr V method
Thefirst argument is a method name that is valid for the current object.
labelexp ::= expr V labe

The second argument isalabel or public label, asit would be referenced from within the
specified method's code context.

typecode - the second argument is a numeric code value interpreted as follows:

Type Description Code

Capture Callback capturing creator's 1
method-related symbols.

Initialized Callback that starts with a clean 2
variable context.

optionscode

An integer interpreted according to bit values:

Option Description Bit

Persistent Survive for the duration of the 0
creating object.

Additive Preserve variable state between 1
calls.

Explanation

Objects can create callbacks to specific labels inside their methods. This allows external
objects to directly invoke a specific label in a specific method. The code being invoked
runs in the context of the object that created the object. Callbacks can be invoked as DO
or GOTO arguments or as extrinsic functions.

The $EXTCALLBACK functionisaprivileged function that returns a callback frame
identifier used in calling back to alabel within any method of the current object. This
identifier can be used to call externally into the specified context. Special privileges are
required to compile code using this function, and its general usein EsiObjectsis not
recommended. In most cases you would use the $CALLBACK function to create
callbacks.

Functions 203

Comments
K eep the following points in mind when you use the SEXTCALLBACK function:

» Usethe DO form of a callback for output, looping, and update functions.
* Usethe GOTO form for delegation and error handling.

» Usetheextrinsic function form of a callback for searches and property lookup.
Related
Message Syntax
$CALLBACK function
Examples

In the following example, the SEXTCALLBACK function is used to return a callback to
the MODIFY label within the Activate method of the current object. The call frame starts
with a clean variable context.

SET T%Cal | Back=$EXTCALLBACK(" Acti vate", "MODI FY", 2)

The following example returns a callback to DELETE. The callback starts with a clean
variable context, and is persistent and additive.

SET T%Cal | Back=$EXTCALLBACK(DELETE, 2, 3)

Functions 204

$EXTRACT

The $EXTRACT function returns some part of a string based on character cell positions.
A specia SET form can be used to modify portions of astring stored in avariable.

Format
SE{XTRACT} (expr {,intexprl {,intexpr2}})
Arguments

expr - An expression whose value is interpreted as a string, some portion of which isto
be returned back.

intexprl - Aninteger value indicating the starting position of the substring to be returned.
intexpr2 - Aninteger value indicating the ending position of the substring to be returned.
Explanation

SEXTRACT accepts three arguments:

» String
e Starting position
* Ending position

The ending position is an absolute character position, not the number of characters after
the start. The second and third arguments are similar to the third and fourth arguments of
$PIECE, for example:

SET T%&t ri ng=" ABCDEFG'
DO $Env. Qut put ($EXTRACT(T¥St ri ng, 3,5))

Resul t: CDE
Only the first argument is required. If the ending position is omitted, the starting position
isused as adefault value. If the starting position is a'so omitted, the first position in the

string is used. The first argument of SEXTRACT isinterpreted as a string. The second
and third arguments are interpreted as integers. Decimal values are truncated.

Functions 205

A special SET form can be used to modify portions of a string stored in avariable. The
special construct SET $EXTRACT is used to replace one or more character positions of
avariable's contents without affecting the rest of the string.

SET T%St ri ng=" ABCDEFG'
SET $EXTRACT(TYString, 3, 5)="*"
DO $Env. Qut put (T¥St ri ng)

Resul ts: AB*FG

If the variable does not exist yet, it is given a starting value of NULL (""). If the number
of charactersin the existing string is less then the starting character position, extra space
characters are added as necessary.

Comments
Keep the following points in mind when you use the SEXTRACT function:

* If the starting position is avalue less than O, then O is used.

» If the ending position is greater than the number of charactersin the string, then
the string's actual length is used.

» |f the starting portion of the string comes after its end, or if the starting positionis
greater than the ending position, then NULL ("") is returned.

* The $EXTRACT function generally can be used in any expression context.
However, the special construct SET $EXTRACT aso can be used to modify a
substring of a variable's contents.

Related

SET command
$LENGTH function

$PIECE function
Examples
The following example displays the third through fifth characters of the string
ABCDEFG.
DO $Env. Qut put ($EXTRACT(" ABCDEFG', 3, 5))
Resul ts: CDE

The following example displays the 5th through 10th characters of the string ABCDEFG.
Because there are only seven characters, the fifth through seventh characters are
displayed.

DO $Env. Qut put (SEXTRACT(" ABCDEFG', 5, 10))

Results: EFG

Functions 206

The following example displays characters negative three through two of the string
ABCDEFG. Because negative character positions are empty, the first two characters are

displayed.

DO $Env. Qut put ($EXTRACT(" ABCDEFG', - 3, 2))

Results: AB
The following example displays characters 10 through 12 of the string ABCDEFG.
Because the starting position is beyond the end, nothing is displayed.
DO $Env. Qut put ($EXTRACT(" ABCDEFG', 10, 12))
The following example displays characters five through three of the string ABCDEFG.
Because the starting position greater than the ending position, NULL (") isdisplayed.
DO $Env. Qut put ($EXTRACT(" ABCDEFG', 5, 3))
The following example displays character four of the string ABCDEFG. Because the
ending position is not specified, the character D is returned.

DO $Env. Qut put ($EXTRACT(" ABCDEFG', 4))

Results: D

The following example displays the first character of the string ABCDEFG. Because the
starting and ending positions are not specified, only the first character is returned.

DO $Env. Qut put (SEXTRACT(" ABCDEFG'))

Results: A

The following example uses the specia construct SET $SEXTRACT to modify the third
through fifth characters of the variable T%String. Note that the replacement string is
simply substituted for those characters. Because the replacement string's length is not the
same as the length of the substring being replaced, this operation changes the length of
the string in T%String.

SET T%st ri ng=" ABCDEFG'

SET $EXTRACT(T%String, 3, 5)="*"
DO $Env. Qut put (T¥St ri ng)

Resul ts: AB*FG

Functions 207

The following example uses SET $SEXTRACT to modify the tenth character of the
variable T%String. However, because there are only seven charactersin T%String at the
time, two spaces are added first.

SET T%St ri ng=" ABCDEFG'
SET $EXTRACT(TYSt ri ng, 10) ="*"
DO $Env. Qut put (T¥St ri ng)

Resul ts: ABCDEFG *

If the variable does not yet exist, it is given astarting value of NULL (""). In the
following example, the variable T%String is undefined, and character position 5is
replaced with the string Text. To achieve this, four spaces are automatically placed at the
start of the string.

KILL T%String
SET $EXTRACT(TSt ri ng, 5) =" Text"
DO $Env. Qut put (T¥St ri ng)

Resul ts: Text

The SET $EXTRACT construct is one way to generate a string containing only spaces.
This example creates a string containing 80 spaces.

KILL T%String
SET $EXTRACT(T%St ri ng, 81) =""

The following example uses a FOR loop with the one-argument SLENGTH, SET
$PIECE, and SEXTRACT functionsto produce a string in which the individual
characters of the string "EsiObjects’ become comma-delimited pieces in the variable
T%String. After these lines have been executed, T%Result should contain the string
E,si,Obj,ects.

SET T%Resul t="", T¥%st ri ng="Esi Obj ects"
FOR T%.oop=1: 1: $LENGTH(T¥st ri ng) DO
. SET $PI ECE(T%Resul t,",", T% oop) =$EXTRACT(T¥St ri ng, T%.o0p)

Functions 208

The following example, the WALK subroutine, traverses all the descendants of the
specified array node, displaying the nodes and their values on the output window. It uses
$DATA to display the root node if necessary, uses SLENGTH and $EXTRACT to build
an array root, uses a FOR loop with SQUERY to traverse the array, and uses
$EXTRACT to determine the exiting condition.

WALK(Node) ; Nonrecursive traversal
NEW Root , Len
| F 11[$DATA(@Node) DO $Env. Qut put (Node_" =<"_@\ode_">")
SET Len=$LENGTH(Node), Root =Node
| F $EXTRACT(Root, Len) =")" SET $EXTRACT(Root, Len)=","
ELSE SET Root=Root " (", Len=Len+1
FOR S Node=$QUERY(@Node) Q $EXTRACT(Node, 1, Len)' =Root DO
. DO $Env. Qut put (Node_" =<"_@lode_">")
QIT

Functions 209

$FIND

The $FIND function finds the next location of a substring within another string after a
specified starting position.
Format

SH{IND} (exprl, expr2{, intexpr})
Arguments

exprl - The larger string to be searched.

expr2 - The substring to look for.

Intexpr - The starting character position from which to begin the search.
Explanation

The $FIND arguments are as follows:

e A string to be searched
* Thesubstring to look for
» The starting position for the search

$FIND begins at the starting position, scanning forward until the substring is found. If
the search position is not specified, the search begins at the start of the string. If itis
found, the character position immediately after the end of the substring is returned. (This
isthe character position from which the next search might begin.) If it isnot found, O is
returned.

Comments
Keep the following points in mind when you use the $FIND function:

» Thestarting position is interpreted as an integer value greater than zero. If a
decimal valueis specified, it istruncated to an integer. If avaluelessthan 1is
specified, then 1 is used.

» If asearch position greater than the end of the string is specified, $FIND returns 0.
Related

$EXTRACT function
$LENGTH function
$PIECE function

Functions 210

Examples

The following example uses $FIND to return the position of the substring “ssi” inside the
string Mississippi, starting at search position 1.

DO $Env. Qut put ($FI ND("M ssi ssippi ", "ssi", 1))

Results: 6

The following example uses $FIND to return the position of the substring “ssi” inside the
string Mississippi, starting at search position 6.

DO $Env. Qut put ($FI ND(" M ssi ssippi ", "ssi", 6))

Results: 9

The following example uses $FIND to return the position of the substring “ssi” inside the
string Mississippi, starting at search position 9.

DO $Env. Qut put ($FI ND(" M ssi ssippi ", "ssi", 6))

Results: 0

The following example uses $FIND to return the position of the substring “ssi” inside the
string Mississippi, starting at the first character in the string.

DO $Env. Qut put ($FI ND(" M ssi ssippi ", "ssi"))

Results: 6

The following example uses a FOR loop to make a string containing pointersto all the
substring positions in the target string.

HI TLI ST(LY%St ri ng, L%ub) ; Display strings with hits
NEW L%Pos, L%Hi t s
SET L% os=1
FOR DO QUIT:'L%os
. SET L%Pos=$FI ND(L¥St ri ng, L¥%Sub, L%P0s)
IF 'L%0s QUT
. SET $EXTRACT(L%i ts, L%0s)="""
DO $Env. Qut put ("Searching for '"_L%ub_"' in '"_L%tring_"'.")
DO $Env. CQut put (L%t ri ng)

DO $Env. CQut put (L%Hi ts)
QT

Functions 211

$FNUMBER

The $FNUMBER function returns an edited form of a numeric expression.
Format

$FN{UMBER} (numexpr , fncodexpr {, intexpr})
Arguments

numexpr - A numeric value to be formatted.

fncodexpr - A code string containing a series of characters specifying the formatting
operations to be performed on the number. The code strings are interpreted as follows:

Code String Description

Porp Places parentheses around negative values,
or enters spaces if the number is positive
(prefix and suffix).

Inserts a comma every three places to the
left of the decimal point.

+ Inserts a plus sign (+) before numbers
greater than 0.
Suppresses the minus sign for negative
values.

Tort Places signs after the string. If sign
suppression is enabled, then using this code
string results in a trailing space.

intexpr - an integer value specifying the number of decimal places to which the number is
to be rounded.

Explanation

The $SFNUMBER function performs a variety of different formatting operations on
numeric values. For any of the formatting possibilities listed, the number can be rounded
to any number of decimal places. Trailing zeros are left when necessary by the rounding
operation. If only two arguments are specified, no rounding occurs. If the second
argument isSNULL ("), no special formatting occurs other than the rounding operation.

Note the following:

* The P code string places parentheses around negative values and suppresses the
minussign (-). If the string is positive, it is surrounded by spaces. This code can
be used with the comma code string (,) only. It is not legal with any other code
strings.

» Thecomma codestring (,) inserts acomma every three places to the left of the
decimal point. Digitsto the right of the decimal point are not affected. If the
number is between 1000 and —1000, this code string has no effect.

* The+ code string inserts a plus sign on numbers greater than 0. If the number is
negative, this code string has no effect.

Functions 212

* The—code string suppresses the minus sign on negative vaues. If the number is
positive, this code string has no effect. Use this code string to find the absolute
value of a number.

* TheT code string places any sign after the string. If anumeric sign (positive or
negative) isto be displayed, then the sign appears at the end of the number instead
of at the beginning. If sign suppression is enabled, atrailing space results.

Comments

Keep the following points in mind when you use the $SFNUM BER function:
» All code string combinations are allowed except you can only use the P code
string with the comma code string (,).

* If the second argument is NULL (""), no special numeric formatting occurs other
than rounding.

e If the third argument is omitted, no rounding occurs.

» Thereturn value of SFNUMBER is a string that can be subjected to further
formatting operations (for example using other functions such as $JUSTIFY and
$TRANSLATE).

Related

PLUS (+) operator
$IUSTIFY function
$TRANSLATE function

Examples
The following example uses SFNUM BER to place parentheses around negative values
and commas before the thousands places.

DO $Env. Qut put ($FNUMBER(- 9876543. 219, "P, ", 2))

Results: (9, 876, 543. 22)

The following example uses SFNUM BER to place parentheses around negative values
and commas before the thousands places. Because the number is positive, it is surrounded
by spaces. Asterisks are displayed to show the spaces in the output.

DO $Env. Qut put ("*" _$FNUVBER(9876543. 219, "P, ", 2) "*")

Results: * 9,876,543.22 *

The following example uses $FNUM BER with no formatting codes and two decimal
places to round the number. Note the use of the numeric interpretation operator + to strip
any trailing zeros.

DO $Env. Qut put (+$FNUVBER(- 9876543. 995, " ", 2))

Results: -9876544

Functions 213

The following example uses $FNUM BER with the minus code (-) to remove the minus
sign on negative values. Note that the result is the absolute value of the number.

DO $Env. Qut put ($FNUVBER(- 9876543. 219, "-"))

Resul ts: 9876543, 219
The following example uses $SFNUM BER to display the plus sign (+) on positive values
and places the sign at the end of the value.

DO $Env. Qut put ($FNUVBER(53647, " T+"))

Results: 53647+

The following example uses $SFNUM BER to suppress the minus sign on negative values
and place the minus sign (-) at the end of the value. The asterisks are used to show the
space character. The T- combination aways results in atrailing space.

DO $Env. Qut put ("*"_$FNUMBER(- 764318. 84, "T-") _"*")

Results: *764318.84 *

The following example uses $SFNUM BER with $JUSTIFY to format a number with
commas and parentheses, rounded to two decimal places and right justified in afield of
fifteen spaces. Asterisks are used to bring out the spaces. Note that the rounding occursin
the innermost function.

DO $Env. Qut put ("*"_$JUSTI FY($FNUMBER(- 764318. 84321, "P, ", 2), 15) _"*")

Results: * (764,318.84)*

The following example uses $SFNUM BER with STRANSL ATE to format a number with
periods instead of commas in the thousands places, and a comma instead of a period as
the decimal indicator.

DO $Env. Qut put ($TRANSLATE($FNUVBER(6543210. 987,",",2),"..,",",."))

Resul ts: 6.543.210, 99

Functions 214

The following example uses $FNUM BER with $TRANSL ATE to format a number with
negative values surrounded by square brackets.

DO $Env. Qut put ($TRANSLATE($FNUVBER(- 43210, "P")," ()", "[1"))

Resul ts: [43210]

Functions 215

$FREECB

The $FREECB function frees a callback.
Format

$FREECB (chref)
Arguments

cbref ::= expratom V callbackframe

The callback frame identifier string used to invoke the callback.

Explanation

Objects can create callbacks to specific labels inside their methods. This allows external
objects to directly invoke a specific label in a specific method. The code being invoked

runs in the context of the object that created the object. Callbacks can be invoked as DO
or GOTO arguments, or as extrinsic functions.

Once a callback isno longer required it should be freed. Under certain conditions,
EsiObjects automatically frees callbacks. Original type callbacks are automatically
destroyed when the process stack frame that created them exits. Nonpersistent callbacks
are freed automatically when their target object is destroyed, and when thereis anew
incarnation of the environment (in other words, at process shutdown or startup).
Persistent callbacks are automatically freed only when their target object is destroyed.

Despite these considerations, it is recommended that all callback types other than
Original should be freed explicitly when they are no longer needed. Thisis done using
the $SFREECB function. The $FREECB function's argument is a callback reference. It
freesthis callback, returning atrue value if the callback existed.

Comments
Keep the following points in mind when you use the $FREECB function:

* Usethe DO form of a callback for output, looping, and update functions.
* Usethe GOTO format for delegation and error handling.

» Usetheextrinsic function form of a callback for searches and property lookup.
Related

M essage Syntax
$CALLBACK function

$EXTCALLBACK function

Examples

The following example frees the callback in T%CallBack. If the callback was already
free, it displays a message.

| F ' $FREECB(T%Cal | Back) DO $Env. Qut put (" Cal | back was al ready freed!")

Functions 216

$GET

The $GET function references a variable whose existence is in doubt, without the danger
of getting an undefined variable error.

Format
$G{ET} (glvn{, expr})
Arguments

glvn - A variable whose value is to be referenced.

expr - The default value to be returned instead, if the variable does not contain avalue.
Explanation

The second argument of $GET specifies adefault value to be returned if the variableis
undefined. If no second argument is specified, NULL (") is used as the default.

If the second argument is present, the value of the argument is always evaluated (even if
the variable is defined).

Comments
Keep the following points in mind when you use the $GET function:

o S$GET isrelated to $DATA because both are used to interact with symbols that
cannot have avalue. But unlike $DATA, $GET isinsensitive to the difference
between avariable that is not defined and one that is defined with the specified
default value. In certain cases such insensitivity is desired, whilein other casesit is
not.

o If the value of the second argument is present, it is always evaluated (even if the
variable is defined). This means that compute-expensive operations should not be
placed in the second argument. In certain cases, it is useful to use $DATA and
$SEL ECT together.

Related

$DATA function

$SELECT function
Examples
The following example executes the QUIT if L%N is not defined ($GET returns NULL

("") asthe default value), or if L%N isdefined and itsvalueisNULL ("") ($3GET returns
itsvalue).

IF $GET(LWN) ="" QU T

The following example uses $DATA. It assigns the value 100 to the variable T%Size if
the instance variable 1%Height contains no value, or assigns the value of 1%Height to
T%Sizeif it does contain avalue.

Functions 217

| E $DATA(| %-ei ght) [0 SET T%Si ze=100
ELSE SET TYSi ze=| %-ei ght

The following simpler example uses $GET to do the same task as shown in the previous
example (except that $TEST is not modified):
SET TuSi ze=$GET(| %-ei ght , 100)

In the following example, the following two lines of code are not equivalent. The first
line uses $GET, causing the SCALLBACK function in the second argument to be called
and its value to be ignored if T%CallBack is undefined. The second line uses $SELECT,
causing the SCALLBACK function to be evaluated only if the variable is undefined.

SET TuCal | Back=$GET(T%Cal | Back, $CALLBACK(MODI FY))
S Tu€al | Back=$S($D(TCal | Back) #10: T%Cal | Back, 1: $CALLBACK(MODI FY))

Functions 218

$GETENTRYREF

The $GETENTRY REF function returns an entry reference to a handler label that can be
called from any M context external to EsiObjects.

Format

SGETENT{RYREF} (geterefarg)
Arguments

geterefarg ::= expr V MethEnt

MethEnt ::= label » method

The argument is an expression whose value is of the form label® method.
Explanation

When the handler is called from outside EsiObjects, it is not immediately in any object
context. To useinstance variables, $SEL F, and other object-sensitive language el ements,
the code must associate itself with an object using the $ASSOCIATE function. Method
inheritance uses the normal inheritance path of the class that implements the method.

The external M code that executes the external callback does not have the benefit of
EsiObjects language elements. It can use simple DO argument indirection to perform the
external callback.

Comments
Keep the following points in mind when you use the $SGETENTRY REF function:

» Thelabel in the argument must be declared as Open or Handler.

» Thehandler isnot immediately executed in any object context and must use
$ASSOCIATE to associate itself with an object if it needs to use $SEL F, instance
variables, and other EsiObjects language elements.

Related

Method structure
Message Syntax

$ASSOCIATE function
Examples

The following example gets a handler to the label HANDLE in the method Update.

SET T%Cal | Back=$GETENTRYREF(" HANDLE" Updat e")

Functions 219

$INFO

The $INFO function returns information about an object.

Format

SINFO(oref, item)

Arguments

oref - An object reference to the object about which information is being requested.

item - An informational item number or name, denoting the kind of information desired
about the object. Possible values are summarized in the following table:

ltem Name Description Returns
1 ClassPointer Pointer to object's class. OID of the object’s class.
2 ClassName or Name of the object's library and A string in the form:
Class class (and nested classes). Lib$Class>NestedClass>...
3 Existence True if the object exists. 1 if the object exists, 0 if it does
not exist.
4 Persistence True if the object is persistent. 1 if object is persistent, O if it is
not persistent.
5 Domain The domain in which the object Name of the Domain (string).
resides.
6 Parent The object's parent. Object reference (OID) to the
parent.
7 Name The object's primary name. Name of the object if it exists
(string).
8 Reference The object’s internal reference The actual reference count
count. value of the object.
9 Virtual The object is a virtual object, not a 0 if not virtual, non-zero if it is
real object. virtual.
10 ExternalClass The objects external class name Name of the external class.
(What Java Proxy is used).
11 Self The object handle which is The objects handle.

equivalent to $Self. It allows various
remote agents to get at the
information. Only useful within a
Java proxy.

12 Protected The object is protected from 1 if object is protected, O if it is
general debugging access. (An not.
object is protected using the
$OSR Function)

Explanation
$INFO provides a general mechanism to be used in obtaining status information about an
object. Objects could implement properties to return these values, but $INFO is

automatically available for all objects without placing any constraints or burdens upon
the programmer.

Comments
Keep the following points in mind when you use the $I NFO function:

Functions 220

* The$INFO and $EXIST functions are related but are different. SEXIST only
checks for the existence of an object where $I NFO checks for a number of object
related characteristics.

Related

$EXIST function

$DATA function
Examples

The following example makes sure that the object T%Employee exists before sending it
an Promote message:

| F $I NFQ(T%Enpl oyee, 3) DO T%Enpl oyee. Pronot e(" Supervi sor")
The following is equivalent to the last example:

| F $I NFO(T%Enpl oyee, " Exi stence”) DO T%Enpl oyee. Pronot e(" Supervi sor")
The following example makes sure the object bound to the T%Class temporary variable
pointsto aclass befor it gets the classes name.

I F $I NFQ(TY ass, 1) S T¥ assNane=T% ass. Nane

The example below returns the class path name of an object when it isanested class. The
value placed in T%Path would be HIS$Patient>AdmitDate if the object inn
T%AdmitDate is an instance of the nested Patient class AdmitDate.

Set TY%at h=%1 NFQ T¥%A\dni t Dat e, 2)

Functions 221

$ISA

The $I SA function performs two kinds of checks.
» It checks an object as a member of a certain class or one of its descendants

* Additionaly, if the object is of acertain type. Types supported are String, Integer, Numeric,
Boolean, Object, Variant or Any.

Format

$ISA (oref , cnexpr)

$ISA (oref , type)

Arguments

oref - An object reference to the object to be tested for class membership.

cnexpr ::= expr V classname - The name of the class of which the object may or may not
be amember.

Type ;= expr V itype— The name of an internal type.
Explanation

The $I1SA function is used to insure that an instance of a class belongs to that classes
parentage or of a certain internal type.

Examples

This example checks an object bound to the T%Obj variable as belonging to the
Collection class. If not, it issues a dialog box with an error message.

If *$I SA(T%Dj, " Col l ection”) Do $Env.Assert(“Not a Col |l ection object.”)

The following examples can be used to test for ainterna type:

$IsA(X, "String") ; Mat ches any none obj ect

$I sA(x, "I nteger") ; Mat ches any positive or negative interger

$I sA(X, "Nuneric") ; Mat ches a nuneric val ue (Excluding scientific notation)
$I sA(x, "Bool ean") ; Matched 0 or 1

$I sA(x, " oject") ; Mat ches any obj ect

$I sA(x, "Variant") ; Mat ches anyt hng

$I sA(x, " Any") ; Mat ched anyt hi ng

Functions 222

$JUSTIFY

The $JUSTIFY function right-justifies a string or number in afield containing a certain
number of spaces, and rounds numeric values to a specified number of decimal places.

Format
$KUSTIFY} (expr, numexpr2)

$KUSTIFY} (numexprl, numexpr2, numexpr3)
Arguments

expr - A string to be right-justified by adding spaces to the | eft (two-argument form).

numexprl - A numeric value to be rounded to the specified number of decimal places and
right-justified by adding spaces to its | eft (three-argument form).

numexpr2 - The minimum width of the return value.

numexpr3 - The number of decimal places to which the rounding is carried out (three-
argument form).

Explanation
Thefirst argument of $JUSTIFY isinterpreted as a string in the two-argument form, or

as anumber in the three-argument form. This is because the three-argument form needs
to perform an inherently numeric (rounding) operation.

The second argument is the minimum width of the return value. If the string or rounded
number contains fewer characters than this value, the appropriate numbers of spaces are
added to the left until its width equals this value. If the string or rounded number contains
more characters than the second argument, it is longer than the minimum width indicated
by the second argument.

The third argument, if specified, isthe number of decimal placesto which roundingis
carried out. Trailing zeros are added if necessary. If not specified, the first argument is
not interpreted numerically and no rounding occurs.

Comments
Keep the following points in mind when you use the $JUSTIFY function:

* Thethird argument isinterpreted as an integer and cannot be a negative number.

* Inthethree-argument form, if the first argument is a value greater than —1 but less
than 1, then the return value has a zero digit to the left of the decimal.
Related

Unary PLUS (+) operator
$FNUMBER function

$TRANSLATE function
Examples

Functions 223

The following example uses $JUSTIFY to right-justify astring in afield of twenty
spaces. Asterisks are used to show where the spaces are added.

DO $Env. Qut put ("*"_$JUSTI FY("Jane Q Public", 20)_"*")

Resul ts: * Jane Q Public*

The following example uses $JUSTIFY to round a number to two decimal places, right-
justifying it in afield of 10 spaces. Asterisks are used to show where the spaces are
added.

DO $Env. Qut put ("*", $JUSTI FY(1234. 5678, 10, 2) , "*")

Results: * 1234.57*

The following example uses the unary PL US (+) operator with $JUSTIFY to round a
number to two decimal places. Note the use of the value O in the second argument.

DO $Env. Qut put (+$JUSTI FY(1234. 9995, 0, 2))

Results: 1235

The following example uses $JUSTIFY and $TRANSL ATE to pad a number with
leading zeros so that it is 5 characters wide.

DO $Env. Qut put ($TRANSLATE($JUSTI FY(123,5),0," "))

Resul ts: 00123

The following example uses $SFNUM BER with $JUSTIFY to format a number with
commeas and parentheses, rounded to two decimal places and right justified in afield of
fifteen spaces. Asterisks are used to bring out the spaces. Note that the rounding occursin
the innermost function.

DO $Env. Qut put ("*"_$JUSTI FY($FNUMBER(- 764318. 84321, "P, ", 2), 15) _"*")

Results: * (764,318.84)*

Functions 224

The following extrinsic variable returns a string containing the approximate time, based
on the second comma-piece of SHOROL OG. Note the use of $SELECT, $JUSTIFY,
and $TRANSLATE in this function.

TIME() ; TIME extrinsic variable
NEW Loi nme, L%Hour , L%V nut e, L%eri di an
SET L% me=$PI ECE($HOROLOG ", ", 2)
| F L9 me#43200=0 Q "12: 00" _$SELECT(L%i me: "pni', 1: "ant')
SET L%Hour =L%li ne\ 3600
SET Lo%weri di an=$SELECT(L%our >11: "pni', 1: "ant')
SET L%our =$JUSTI FY(L%our #12, 2)
| F L%Hour=" 0" SET L%our=12
SET LYW nut e=$JUSTI FY(L%Ti ne\ 60#60, 2)
SET L% me=$TR(L%our _":" _ L%V nute_L%kridian," ",0)
QU T LY ne

Functions 225

$SLENGTH

The $SLENGTH function measures the length of a string in terms of character cells or
delimited pieces.

Format

SL{ENGTH} (exprl{, expr2})

Arguments

exprl - A string whose length is to be measured in terms of character cells or delimited
pieces.

expr2 - If present, adelimiter into which the string is to be broken up.

Explanation

The one-argument form of $L ENGTH measures the number of charactersin the string.
In the two-argument form, the second argument is a delimiter used to divide the string
into pieces. Thisform of 3LENGTH returns the number of piecesin the string.

Delimiters are usually one character in length, but the only limit to their length is the
maximum string size.

The number of piecesis similar to the number of words in a sentence. For example, in the
following string, using a space as a delimiter, the total number of pieces equals 4:

"John dropped the ball."

The number of piecesis always equal to the number of nonoverlapping instances of the
delimiter, plus 1. The following table shows additional examples.

String Delimiter Number of Pieces
"first, second,third, fourth" , 4
"ABCBBDABE" B 5
UANANNN" 6
"Hello" ? 1
"XXXXXX" XX 4
"XXXXXKXK XX 4
1
Comments

Keep the following points in mind when you use the SLENGTH function:
* Inthe one-argument format, if the stringis NULL (") then SLENGTH returns 0.

* Inthetwo-argument form, if the second argument is specified as NULL (""), then
the return value is always 0.

» Theone-argument form of LENGTH often is used with SEXTRACT. The two-
argument form often is used with $PIECE.
Related

SET command

Functions 226

$EXTRACT function
$PIECE function

$ZLENGTH function
Examples

The following example uses a FOR loop with the one-argument SLENGTH, SET
$PIECE, and SEXTRACT to produce a string in which the individual characters of the
string "EsiObjects" become comma-delimited piecesin the variable T%String. After
these lines have been executed, T%Result should contain the string "E,s,i,O,b,j,ect,s".

SET T%Resul t="", T¥%8t ri ng="Esi bj ects"
FOR T%.oop=1: 1: $LENGTH(T¥st ri ng) DO
. SET $PI ECE(T%Resul t,",", T% oop) =$EXTRACT(T¥St ri ng, T%.oo0p)

The following extrinsic function performs a search-and-replace operation on a string,
sending back the transformed string as its return value. It uses the two-argument
$LENGTH to count the number of piecesin the source string, and uses $PI ECE and
SET $PIECE to do the replacement operation.

REPL(L%t ri ng, L%rom L% 0) ; Replace L% romwth L% 0o in L%5tring
NEW L% t er, L%Resul t, L%.engt h
IF L% rom="" QUT""
SET L%.engt h=$LENGTH(L%8t ri ng, L% on)
| F L9%o="" SET L%esult="" FOR L%ter=1:1:L%ength DO
. SET L9%Resul t =L%Resul t _$PI ECE(LYGtring, L%rom L% ter)
ELSE FOR L%ter=L%ength:-1:1 DO
. SET $P(L%Resul t, L%o, L% ter)=$P(L%String, L%romL%ter)
QU T L%zesul t

The following expression returns the string EsiObjects Language for
EsiObjects Programming.

$$REPL(" M Language for M Progranmmi ng", "M, "Esi Qbj ects")

Functions 227

The following example, the WALK subroutine, traverses all the descendants of the
specified array node, displaying the nodes and their values on the output window. It uses
$DATA to display the root node if necessary, uses SLENGTH and $EXTRACT to build
an array root, aFOR loop with $QUERY to traverse the array, and $EXTRACT to
determine the exiting condition.

WALK(Node) ; Recursive traversal
NEW Sub, Dat aVal , NodeNane
| F $DATA(@ode) #10 DO $Env. CQut put (Node_" =<"_@\ode_">")
SET Sub=""
FOR SET Sub=$ORDER(@lode@ Sub)) QUI T: Sub="" DO
. SET NodeNanme=$NAME(@Node @ Sub))
. SET Dat aVal =$DATA(@odeNane)
. | F Dataval ' [0 DO $Env. Qut put (NodeNanme_" =<"_@\Node_">")
. | F DataVval >9 DO WALK(NodeNane)
QT

Functions 228

$LIBRARY

The $LIBRARY function returns the object reference of alibrary, given its name as
input.

Format

SLIB{RARY} (libexpr)

Arguments

libexpr ::= expr V libraryname - An expression whose value is the name of alibrary.
Explanation
Thisfunction is useful whenever it is necessary to transform a string containing the name

of alibrary into an object reference. The function returns NULL (") if the specified
library does not exist.

Related

SLIBRARY specia variable
Examples

The following example transforms a library name that the user has selected from alist
box into an object reference that can be used to communicate with the library. It then asks
the library to copy al its class namesinto alist box.

SET TOoAi br ar y=$LI BRARY(" MyLi brary")
IF T%.ibrary="" QUT
DO T9%.i brary. Copyd assLi st (Target: | %.i st Box, Nanes)

Functions 229

$LOOKUP

The $L OOK UP function allows privileged code to access the values in a symbol table,
optionally including subscript levels.

Format

$LOOKUP (name, subscripts, typexpr)
Arguments

name - The name of the variable.

subscripts - An expression whose value is an entire subscript list, including the
parentheses.

A
C

@)
zZ

Accessor
Class
Constant

Global
Instance
Typexpr ::=exprV Local
NamePool
Object Name
Parameter
Relative/Region

System

cCw»w>Xx®UVOoOZ2r — O

Universal
Explanation

Y ou can use the $L OOK UP function with any EsiObjects symbol, including templates
and name pools.

Comments
Keep the following points in mind when you use the $L OOK UP function:

* You can use the $L OOK UP function to get the values of EsiObjects variables
instead of using name or subscript indirection.

* Once the names of the variables are obtained with SWAL K, their values can be
referenced with $L OOK UP.

» Because special privileges are required, general use of $L OOKUP in EsiObjects
is not recommended.
Related

INDIRECTION (@) operator

$WALK function
Examples

Functions 230

The following example contains a FOR loop used to traverse the names of an object's
instance variables with WAL K and $L OOK UP is used to obtain their values (for those
that have simple values).

SET T%.oop=""
FOR SET T%.00p=$WALK(T%.00p,"","|") QU T: T%.00p="" DO
. DO T9W ndow. AddLi ne("Var: "_T%oop_", Val: "_$LOOKUP(T%.oop,"","1"))

QUT

Functions 231

$SNAME

The $NAME function converts a variable name or array reference to a string
representation in which the subscripts are expressed as literals.

Format

SNA{ME} (glvn, intexpr)

Arguments

glvn - A variable name or array reference to be converted to a string representation.

intexpr - The maximum number of subscript levelsfor the return value.

Explanation

If the maximum number of subscript levelsis specified, then any extra subscriptsin the
specified array node are not present in the return value. If the number is 0, then only the

array root node is returned. If the number is not specified, then al the subscriptsin the
array node are present in the return value.

Comments
Keep the following points in mind when you use the SNAM E function:
* The $SNAME function has many uses, but one of the most common is to convert
an array node reference using subscript indirection into a string that can be used in

name indirection, or can itself be used as the base location for deeper levels of
subscript indirection.

* ISNAME isaso useful in generating strings containing array names to be stored in
variables or passed as parameters.

» Thereturn value of SNAME is a namevalue appropriate to be used with name
indirection, as aroot in subscript indirection, or as a parameter of SQLENGTH
and $QSUBSCRIPT.

Related

INDIRECTION (@) operator
$QLENGTH function
$QSUBSCRIPT function

$QUERY function

Examples

The following example uses $NAM E to convert an array node reference, accessed
through subscript indirection, into a string representation that can be stored in avariable.

Variable names and expressions in the subscript values are simplified to literal valuesin
the target string.

SET T%Handl e=$NAVE(@%lar get @ T%.oop, T%.i ne+1))

Functions 232

The following example uses SNAME to return a string containing only the first three
subscript levels of the specified array node.

SET T%andl e=$NAVE(@%Tlar get , 3)

The following example uses $SNAME to return a string containing only the root node of
the specified array.

SET T%Handl e=$NAVE(@%Tar get , 0)

The following example, the WALK subroutine, traverses all the descendants of the
specified array node, displaying the nodes and their values on the output window. It uses
aFOR loop with SORDER to traverse the nodes, uses $DATA to determine whether a
given node contains data, and uses $NAM E to convert a subnode into aname value. This
name value is then used in name indirection as the argument of $DATA and is passed as
a parameter.

WALK(Node) ; Recursive traversal
NEW Sub, Dat aVal , NodeNane
| F $DATA(@lode) #10 DO $Env. Qut put (Node " =<"_@lode_">")
SET Sub=""
FOR SET Sub=$ORDER(@lode@ Sub)) QUI T: Sub="" DO
. SET NodeNarme=$NAME(@ode@ Sub))
. SET Dat aVal =$DATA(@odeNane)
. | F Dataval ' [0 DO $Env. Qut put (NodeNanme_" =<"_@\Node_">")
. | F DataVal >9 DO WALK(NodeNan®)

QT

The following example is an alternative implementation of the WALK subroutine. It uses
$DATA to display the root node if necessary, uses SLENGTH and $SEXTRACT to build
an array root, uses a FOR loop with SQUERY to traverse the array, and uses
$EXTRACT to determine the exiting condition. Inside the FOR loop thereisonly a
single instance of indirection with no arecursive call.

WALK(Node) ; Nonrecursive traversal
NEW Root , Len
| F 11[$DATA(@lode) DO $Env. Qut put (Node_" =<"_@\ode_">")
SET Len=$LENGTH(Node) , Root =Node
| F $EXTRACT(Root, Len) =")" SET $EXTRACT(Root, Len)=","
ELSE SET Root =Root _" (", Len=Len+1
FOR S Node=$QUERY(@Node) Q $EXTRACT(Node, 1, Len)' =Root DO
. DO $Env. Qut put (Node_" =<"_@\ode_">")
QIT

Functions 233

SNORMALIZE

The SNORMAL I ZE function is generally used to convert an external value into an
internal value for strorage. For example, the external values Y es and No can be
normalized to the values 1 and O respectively as can True and False. The
SNORMALIZE function is used in concert with the $Normalize property accessor.
When a property is messaged within the context of the SNORMALIZE function, the
$Normalize accessor is executed

Format
SNORMALIZE (Normmpr, expr)
Arguments

Normmpr ::= Object . service

Expr

Normmpr - A reference to an objects property service that contains the $Normalize
accessor that will be executed to normalize the value.

expr - An expression that evaluates to a string to be normalized.

Explanation

If the first argument of SNORMAL I ZE is an object service reference to the property that
contains the $Normalize accessor. The return value is based on the validity of the service

or property assignment value. The second argument is an expression that must evaluate to
astring. It isthe value to be normalized.

Comments

The SNORMAL I ZE function should always return the normalized value to the caller.
The input value to the function should always be checked for validity before passing it in.
The SNORMAL I ZE function should only normalize the value. No attempt should be

made to validate or save the value within this function - use the $Valid and Assign
accessors for this respecirively.

Related
$VALID function

Message Syntax

Functions 234

Examples

The following example illustrates how the $Normalize function would normalize the
external value "Yes' to theinternal form 1. First an instance of Employeeis created and
bound to the T%Employee temporary variable. Next, the Veteran property of the
Employee object is accessed within the context of the $Normalize function. The
$Normalize function returns the normalized value (1) and bindsit to the T%V et
temporary variable.

CREATE T%Enpl oyee=Fr amewor k$Enpl oyee
S TWet =$NORMALI ZE(T¥Enpl oyee. Vet er an, " Yes")

Functions 235

$OIDPTR

The $OIDPTR function is a privileged function that transforms an object reference into
an M pointer that can be used with name indirection.

Format
$OIDPTR (oref)
Arguments

oref - The object reference of the object whose pointer isto be returned.
Explanation
The $OIDPTR function is a privileged function that transforms an object reference into

an M pointer that can be used with name indirection. Some of the object's contents are
stored under its base pointer, but others are not.

If the argument is not avalid object reference or the operation otherwise fails, the

function returns NULL ("").
Comments

K eep the following points in mind when you use the $OIDPTR function:

e Itisimpossible to tell which of an object's structures fall under its base pointer and
which do not.

» Useof $OIDPTR easily can result in violations of object encapsulation.
Therefore, it is not recommended for general usein EsiObjects.
Related

$PTROID function
Examples

The following example locks the root node of the external object whose or ef is contained
in the temporary variable ExtObyj, thereby effectively locking the object and its
subcomponents. However, any object structures that do not fall underneath this pointer
are not locked.

LOCK +@0 DPTR(T%bj ect 12)

Functions 236

$ORDER

The $ORDER function returns the next or prior subscript, using the specified array
reference as a starting point.

Format

$O{RDER} (glvn{, direction})
Arguments

glvn - The array node from which the search should begin.
direction ::=expr V 1
-1
The value 1 indicates a forward search and —1 indicates a backward search. If not
specified, 1 isthe default.

Explanation

The search takes place at the deepest subscript level specified. In other words, if an n-
level array node is specified as the argument, the next or prior nth-level subscript is
returned. The return value is always a subscript in the subtree having the same first n-1
subscripts. If no such subscript exists in the specified direction, NULL (") is returned.

The order in which subscripts are returned is the array's logical collating sequence. In
most cases standard ASCI| collating order is used:

e 1 NULL (") comesfirst.

- 2 All purely numeric values come next, in numeric order. A value X is
considered to be purely numeric if the expression +X=X istrue (in other words, if
its numeric interpretation equals its actual value). Therefore, 2 is numeric, and 2.0
and 2 installations are not numeric.

e 3 All other string values come next, in order of the ASCII code values of
their characters. Therefore, A comes before Armadillo and Z, but a comes after all
these values.

e 4 NULL ("") comes last.

Subscripts are grouped together in this order underneath their common ancestor. Because
NULL (") comes both first and last in this sequence but is not itself alegal subscript
value, it iscommon to use NULL ("") as both the starting and ending values when using
$ORDER.

Functions 237

The following example illustrates the traversal of the immediate descendants of a global
array node"MYG.(Q(22, 1) .

SET T%.oop=""

FOR SET T%.00p=$ORDER("MYGLO(22, 1, T%.00p)) QU T: T%.00p="" DO
. DO $Env. Qut put (T%.00p_" = "_"MYGLQ(22, 1, T%. 00p))

QT

This loop begins the traversal from the subscript position NULL ("), ending it when the
iterating variable T%L oop equals NULL ("").

Comments
K eep the following points in mind when you use the SORDER function:
* Because NULL ("") isthe starting and ending value, it isimportant to test for this

value in the terminal condition. Otherwise, SORDER usesit as a starting value,
often causing an infinite loop.

» Itismore complex to traverse descendant array nodes with SORDER than with
$QUERY. Often arecursive call isrequired.

* Insome cases whereit is desired to visit descendant array nodes, the SQUERY
function is an aternative to SORDER. However, SORDER is used in the majority
of application-programming cases.

» Because SORDER only visits nodes at a single subscript level, it visits al nodes at
that level. Thismeansit can visit any array node whose $DATA valueis 1, 10, or
11.

* Thereationa SORTSAFTER (]]) operator is used to determine whether one
subscript follows another in the subscript collating sequence. Therefore, ofteniitis
used with SORDER.

Related

SORTS AFTER (]]) operator
FOR command

$DATA function

$QUERY function

Functions 238

Examples

The following example, the WALK subroutine, traverses all the descendants of the
specified array node, displaying the nodes and their values on the output window. It uses
aFOR loop with SORDER to traverse the nodes, uses $DATA to determine whether a
given node contains data, and uses $SNAM E to convert a subnode into aname value. This
name value is then used in name indirection as the argument of $DATA and is passed as
a parameter.

WALK(Node) ; Recursive traversal
NEW Sub, Dat aVal , NodeNane
| F $DATA(@ode) #10 DO $Env. CQut put (Node_" =<"_@\ode_">")
SET Sub=""
FOR SET Sub=$ORDER(@lode@ Sub)) QUI T: Sub="" DO
. SET NodeName=$NAME(@ode@ Sub))
. SET Dat aVal =$DATA(@odeNane)
. | F Dataval'[0 DO $Env. Qut put (NodeNanme_" =<"_@\Node_">")
. | F DataVal >9 DO WALK(NodeNane)

QT

The following example provides an aternative implementation of the WALK subroutine.
It uses SDATA to display the root node if necessary, uses SLENGTH and $EXTRACT
to build an array root, uses a FOR loop with SQUERY to traverse the array, and uses
$EXTRACT to determine the exiting condition. Inside the FOR loop thereisonly a
single instance of indirection with no arecursive call.

WALK(Node) ; Nonrecursive traversal
NEW Root , Len
| F 11] $DATA(@Node) DO $Env. Qut put (Node_" =<"_@Node_">")
SET Len=$LENGTH(Node), Root =Node
| F $EXTRACT(Root, Len) =")" SET $EXTRACT(Root, Len)=","
ELSE SET Root=Root_" (", Len=Len+1
FOR S Node=$QUERY(@Node) Q $EXTRACT(Node, 1, Len)' =Root DO
. DO $Env. CQut put (Node_" =<"_@\ode_">")
QT

Functions 239

$OSR

The $OSR (Object Service Request) function is used as a general -purpose function to
provide object services.

Format

SOSR(expry,expra, Xpry ...)

where:

expr1 V string or numeric. It isthe name or number of the Service Request.
exprz V OID which isthe target object the service isto be applied to.

exprn... V specific to the Service Request
Explanation

Object Service provides ageneral approach to implementing services that the
programmer can use. The following table contains alist of services.

Service Service | Description Parameters

Name Number

Protect 1 Applies protection to an Expr; that evaluatesto 1.
object so that the object

cannot be browsed. This
service actually changes the
state of the object.

Comments

Services will be added to the list as they are implemented.
Related

$INFO function
Examples

The following shows how to protect an object using the $OSR function. Assume that a
list contains all the financial transactions of a person. Protecting it from browsingisa
requirement.

Create T%.i st =Base$Li st
Do T%-i nQoj . LoadLi st (T9%.i st) ;Loads list with transactions.
Do $OSR(“Protect”, T%.ist,1) ;Protect list from browsing.

If $I NFQ(T%bj , " Protected”) W*“The object is protected”

Functions 240

$PIECE

The $PI ECE function returns one or more pieces in a delimited string.
Format

SP{IECE} (exprl, expr2{, intexprl{, intexpr2}})
Arguments
exprl - A string to be broken up in terms of delimited pieces.

expr2 - If present, adelimiter into which the string is to be broken up.
intexprl - The number of the first piece being specified.
intexpr2 - The number of the second piece being specified.

Explanation

The first argument of $PIECE is a string and the second argument is a delimiter used to
divide the string into pieces. The function returns one or more of the pieces in the string.
Delimiters are usually one character in length, but the only limit to their length is the
maximum string size.

Informally speaking, the piecesin astring are loosely similar to the words in a sentence if
the space character is used as a delimiter. In the following example, the space character is
used as a delimiter and the total number of pieces equals 4-

"John dropped the ball."

In the previous example, thefirst pieceis*“John”, the fourth pieceis“ball” and so on.

Functions 241

In amore formal sense, the number of piecesis aways equal to the number of
nonoverlapping instances of the delimiter, plus 1. The pieces are the portions of the string
occurring between the delimiters. If there is nothing between two delimiters, the value of
the pieceisNULL (""). The following table contains additional examples.

String Delimiter ~ Number of First Piece Last Piece
Pieces
"first , second, 4 "first " " fourth"
third, fourth"
"ABCBBDABE B 5 "A" "E"
RVAVAVAVAVAUL N 6
"Hello" ? 1 "Hello" "Hello"
"axXXXXXX" XX 4 "a"
"XXXXXXX" XX 4 X"
Space 1

If the delimiter is specified asNULL (""), then the return value of $PIECE is always
NULL (")

The third and fourth arguments of $PIECE are similar to the second and third arguments
of SEXTRACT. Both arguments are interpreted as integers. If the third argument is less
than 1, the value O isused. If the fourth argument is greater than the number of piecesin
the string, the actual number of piecesis used. If the third argument is greater than the
number of piecesin the string, or greater than the fourth argument, NULL ("") is
returned.

If the third and fourth arguments together address more than one of the piecesin the
string, then the entire portion of the string from the starting piece to the ending pieceis
returned, including the intervening delimiters. For example, the following expression
returns third-fourth-fifth:

$PIECE("first-second-third-fourth-fifth-sixth-seventh","-",3,5)

If the fourth argument is omitted, the value of the third argument is used as a default.
This causes the single piece referenced by the third argument to be returned. If the third
argument is also omitted, the first pieceis returned.

Comments
Keep the following points in mind when you use the $PI ECE function:

* The specia cases involving the third and fourth arguments of $PI ECE obey the
same general principles as the specia casesinvolving the second and third
arguments of SEXTRACT.

* Thetwo-argument form of 3LENGTH is often used with $PIECE wheniit is
necessary to count the piecesin astring.

Functions 242

* SET $PIECE isauseful tool when manipulating strings in terms of any substring
they may contain, even when the substring is not explicitly being used as a
delimiter.

Related

SET command
$EXTRACT function
$LENGTH function
$QSUBSCRIPT function

$ZPIECE function
Examples

The following example sets T%Result to the value “third-fourth-fifth” using the four-
argument form of $PIECE.

SET T¥%String="first-second-third-fourth-fifth-sixth-seventh"
SET T%Resul t =$PI ECE(T%String,"-", 3, 5)

The following example sets T%Result to the value fourth using the three-argument form
of $PIECE.

SET T9tring="first-second-third-fourth-fifth-sixth-seventh"
SET T%esul t =$PI ECE(T¥String, "-", 4)

The following example sets T%Result to the value """ using the three-argument form of
$PIECE.

SET T%string="first-second-third-fourth-fifth-sixth-seventh"
SET T9%Resul t =$PI ECE(T9®tring,"-", 8)

The following example sets T%Result to the value first using the two-argument form of
$PIECE.

SET T%Gtring="first-second-third-fourth-fifth-sixth-seventh”
SET T%Resul t =$PI ECE(T¥5tring,"-")

The following example sets T%Result to the value
piece.

because the fourth pieceisanull

SET T%St ri ng="A"B"C'"\E"
SET T%zesul t =$PI ECE(T¥Stri ng, """, 4)

Functions 243

The SET $PIECE is used to replace one or more delimited pieces of avariable's contents
without affecting the rest of the string. In this example, pieces 3, 4, and 5 of the string in
T%String are replaced with an asterisk (*).

SET T%Gtring="one/two/three/four/fivel/six/seven"
SET $PI ECE(T%String,"/",3,5)="*"
DO $Env. Qut put (T¥St ri ng)

Resul ts: one/two/ */si x/ seven

If the variable does not exist yet, it is given astarting value of NULL (""). If the number
of piecesin the existing string is less then the starting piece position, extra delimiters are
added as necessary. In the following example, the variable T%String is undefined, and "."
piece 5 is replaced with the string Text. To achieve this, four periods are automatically

placed at the start of the string.

KILL T¥%String
SET $PIECE(T¥String,".",5)="Text"
DO $Env. Qut put (T¥St ri ng)

Results:Text

The following example uses a FOR loop with the one-argument $LENGTH, SET
$PIECE, and SEXTRACT to produce a string in which the individual characters of the
string EsiObjects become comma-delimited pieces in the variable T%String. After these
lines have been executed, T%Result should contain the string E,s,i,0,b,j,e,ct,s.

SET T%Resul t="", T¥%st ri ng="Esi Obj ects"
FOR T%.oop=1: 1: $LENGTH(T¥st ri ng) DO
. SET $PI ECE(T%Resul t,",", T% oop) =$EXTRACT(T¥St ri ng, T%.o0p)

The following extrinsic function performs a search-and-replace operation on a string,
sending back the transformed string as its return value. It uses the two-argument
$LENGTH to count the number of piecesin the source string, and uses $PI ECE and
SET $PIECE to do the replacement operation.

REPL(L%t ri ng, L%rom L% 0) ; Replace L% romwth L% 0o in L%Btring
NEW L% t er, L%Resul t, L%.engt h
IF L% rom="" QUT""
SET L%.engt h=$LENGTH(L%&t ri ng, L%-r o)
| F L9%o="" SET L%esult="" FOR L%ter=1:1:L%ength DO
. SET L9%Resul t =L%Resul t _$PI ECE(L¥%Bt ri ng, L%rom L% ter)
ELSE FOR L%ter=L%ength:-1:1 DO
. S $PI ECE(L%Resul t, L% 0, L% t er) =$PI ECE(L¥St ri ng, L%rom L% ter)
QU T L%zesul t

The following expression returns the string EsiObjects Language for EsiObjects
Programming:

$SREPL(" M Language for M Progranmm ng"," M, "Esi Cbj ects")

Functions 244

$PROTECT

The $PROTECT function protects an object from being preserved or destroyed.
Format

$PROTECT (expr)
where:

exprV OID
Explanation

The $PROTECT function creates a protected pointer (OID) to an object. Often, when an
object handle is exposed to a consumer, protecting it from being destroyed or preserved is
important.

Comments
The protected object ignores both the Preserve & Destroy commands.

Used to protect an object when the pointer is exposed.

Changes the OID form $C(31)_N_ptr to $C(31)_T _ptr.
Related

DESTROY command
SREFERENCE special variable
PRESERVE command

CREATE command
Examples

Assume that a handle to a patients record must be returned to the consumer and that it
must be protected from being destroyed or preserved. The handle can be handed back by
the methods Quit command.

Quit $Protect (1% atQ d)

Functions 245

$PTROID

Given a string representing the name of an M variable that is the base location for an
object, $PTROID returns a handle for the object.

Format
$PTROID (namevalue, typexpr)
Arguments

namevalue ::= expr V glvn - An expression whose value is the base array node of the
object's location.

typexpr ::= expr V type - An expression whose value is generaly N for normal, but can
be T for template, L for classor | for instance.

Explanation
The $PTROID function is a privileged function that transforms an M pointer into an

object reference. This can cause errorsif avalid object is not stored at the specified
location.

Comments
Keep the following points in mind when you use the $PTROI D function:
e S$PTROID isonly needed in cases where an M pointer to an object exists, but the

object reference is not known. It is generally better to use object-level servicesto
interact with objects.

* Useof $PTROID can result in violations of object encapsulation. Therefore, itis
not recommended for general use.
Related

$OIDPTR function
Examples

The following example converts the root node "OOTEST(10) into a normal object
reference.

SET T%Dbj ect 12=$PTRO D("~OOTEST(10) ", " N")

Functions 246

$PTRSTR

The $PTRSTR function converts an object reference into a normalized form suitable for
use with string operations.

Format

$PTR{STR} (oref)
Arguments

oref - The object reference to be converted.
Explanation

The $PTRSTR function converts an object reference into a normalized form suitable for
use with string operations.

Comments
Keep the following points in mind when you use the $SPTRSTR function:

* Unlike 3PTROID and $OIDPTR, $PTRSTR is not a privileged function.

e Thestring produced by $PTROI D can contain control characters, but it is suitable
for use in string operations. Usually, the string can be displayed without causing
errors, and isinterpreted as aliteral value rather than an object reference.

Related

$OIDPTR function
$PTROID function
Examples

The following example returns the pointer to a database directory object in string form
and displays it in the output window.

S T%DbPtr=$PTROID (1 %Databases))

Resul ts: N N*shrobj (35, 1)

Functions 247

$QLENGTH

The $QLENGTH function returns the number of subscriptsin a string containing an
array reference.

Format

$QL{ENGTH]} (namevalue)

Arguments

namevalue - A string containing the name of an array node.
Explanation

The $QLENGTH function returns the number of subscriptsin a string containing an
array reference. For example, if the string references an array node with 5 subscripts, then
$QLENGTH returns 5. If the string references aroot array node with no subscripts, then
SQLENGTH will return 0.

Comments

The behavior of this function is unspecified in cases where the argument is not a properly
formatted namevalue.

Related
$LENGTH function

$QSUBSCRIPT function

$ZLENGTH function
Examples

The following FOR loop displays the root node and all the subscripts of the array
referenced in T%T arget.

FOR T%.oop=0: 1: SQLENGTH(T%lar get) DO
DO $Env. Cut put ($QSUBSCRI PT(T%Tar get , T¥%.oop))
The following example removes the last subscript from the array node in T%Target:

SET T9%/lar get =$NAVE(T9drar get , SQLENGTH(T9%drar get) - 1)

Functions 248

$QSUBSCRIPT

The $QSUBSCRIPT function returns the specified subscript in a string containing an
array reference.

Format

$QS{ UBSCRIPT} (namevalue, intexpr)
Arguments

namevalue - A string containing an array node reference suitable for use with name
indirection.

intexpr - The numeric position of the subscript whose value isto be returned.
Explanation

The $QSUBSCRIPT function returns the specified subscript in a string containing an
array reference. If subscript number O is requested, the array root node is returned. If
subscript number —1 is requested, then the return value is the environment if the array
reference includes an environment name, or NULL if it does not. If a subscript number is
specified that is greater than the actual number of subscriptsin the array reference, the
NULL ("") isreturned. Subscripts numbered less than -1 are not allowed.

For example, consider a string that references an array node with 5 subscripts. If subscript
3isrequested, then $QSUBSCRIPT returns the literal value of the third subscript. If
subscript O is requested, it returns the value of the array root. If subscript 6 is requested, it
returns NULL ("").

Comments

The behavior of this function is unspecified in cases where the argument is not a properly
formatted namevalue.

Related

$SNAME function
$PIECE function
$QLENGTH function

$ZPIECE function
Examples
The following FOR loop displays the root node, and all the subscripts of the array
referenced in T%Target.
FOR T%.oop=0: 1: $QLENGTH(T%Tar get) DO
DO $Env. Qut put ($QSUBSCRI PT(T%ar get , T¥.00p))

Functions 249

$QUERY

The $QUERY function returns the full reference of an array node that has avalue
associated with it.

Format

SQ{UERY} (glvn)
Arguments

glvn - Specifies the array node position from which the search is to begin.
Explanation

The $QUERY function's argument isaglvn (array node) and itsreturn valueisa
namevalue (string containing an array node). Name indirection is often used to convert
this string back to an array node.

The order in which subscripts are returned is the array's logical collating sequence. In
most cases standard collating order is used:

e 1 NULL (") comesfirst.

. 2 All purely numeric values sort next in numeric order. A value X is
considered to be purely numeric if the expression +X=X istrue (in other words, if
its numeric interpretation equals its actual value). Therefore, 2 is numeric and 2.0
and 2 installations are not numeric.

e 3 All other string values come next, in order of the ASCII code values of
their characters. Therefore, A comes before Armadillo and Z, but a comes after all
these values.

e 4. NULL (") comes last.

Subscripts are grouped together in this order underneath their common ancestor. Because
NULL (") isanillegal subscript value, it is never actually returned by SQUERY except
when there is no next value to return.

Functions 250

The following exampleillustrates a $QUERY traversal beginning from the array node
AMY GLO(22,1). Note that the traversal does not automatically stop once it has passed
the descendants of this node.

CREATE | %-i | e=Base$AbsSeri al i zati onObj ect

DO | %i | e. Open(" MYGLO. TXT")

SET T%.oop=""MYGL(Q(22,1)"
FOR SET T%.00p=$QUERY(@?%.0op) QUI T: T%.oop="" DO
. DO 1%ile. Use("MYGEO TXT")

. DOI1%ile Wite(T%.oop, @%.oop)
DO 1 %ile.d ose("MYGO TXT")

QUT

Thisloop begins the traversal from the array node MY GLO(22,1), ending it when the
iterating variable T%Loop equals NULL (""). A more complicated terminal condition
would be required to exit when the subtree has been completed.

Comments
Keep the following points in mind when you use the SQUERY function:

* $QUERY only visits array nodes whose $DATA valuesare 1 or 11.

» Theroot node of the subtree to be traversed should be specified as the starting
value.

» Itismore complex to traverse descendant array nodes with SORDER than with
$QUERY . However, determining when the end of a subtree has been reached is
easier with SORDER. $QUERY returns NULL (") when it reaches the end of the
array, not the end of the subtree being traversed. Therefore, a specia test is
required to determine when the subtree has been entirely traversed.

Related

FOR command
$DATA function
$ORDER function

Functions

Examples
The following example, the WALK subroutine, traverses all the descendants of the

specified array node, exporting the node name and value to an external serial device. It

uses a FOR loop with $ORDER to traverse the nodes, uses $DATA to determine

251

whether a given node contains data, and uses SNAM E to convert a subnode into a name
value. This name value is then used in name indirection as the argument of $DATA and

IS passed as a parameter.

WALK(Node) ; Recursive traversal
; Assumes | %-ile points to a serialization object

DO |1 9% | . Open(" MYGLO. TXT")

| F $DATA(@ode) #10 DO | %Fi | e. Wi t e(Node, @ode)

SET Sub=""

FOR SET Sub=$O0ORDER(@Node@ Sub)) QUI T: Sub="" DO

. SET NodeName=$NAME(@ode@ Sub))

. SET Dat aVal =$DATA(@odeNane)
|F DataVal ' [0 DO | %i |l e. Wit e(NodeNane, @NodeNane)
| F Dat aVal >9 DO WALK(NodeNane)

QT
The following example provides an alternative implementation of WALK. It uses

$DATA to display the root node if necessary, uses SLENGTH and $EXTRACT to build

an array root, uses a FOR loop with $QUERY to traverse the array, and uses

$EXTRACT to determine the exiting condition. Recursive calls are unnecessary when

using the SQUERY .

WALK(Node) ; Nonrecursive traversal
| F 11[$DATA(@%Node) DO | %Fi |l e. Wit e(T¥ode, @%\ode)
SET T%.en=3LENGTH(T%\ode) , T¥Root =T%Node
| F $EXTRACT(T9%00t , T9% en) =")" SET $EXTRACT(T%Root, T%en) =", "
ELSE SET T%Root =T%Root _" (", T% en=T%.en+1
FOR SET T%\ode=$QUERY(@%\ode) QUI T: $EXTRACT(T%\ode, 1, T%.en) ' =T%Root
. DO 1%ile Wite(T%\ode, @%\ode)
QUT

DO

Functions 252

$QUOTE

The $QUOTE function returns a string enclosed in quotation marks.
Format

SQUO{TE} (expr)

Arguments

expr - The string to enclose in quotation marks.

Explanation

The $QUOTE command is useful when the XECUTE command or the INDIRECTION
(@) operator are used and quotation marks need to be doubled. It isalso useful in
simplifying the management of nested quotation marks in cases where multiple levels of
indirection are necessary.

Comments

The entire string is enclosed in quotation marks. Any quotation marks inside the string
are replaced by two quotation marks.

Related

INDIRECTION (@) operator
XECUTE command
Examples

The following example constructs a command that will extract a substring from the
variable T%String, starting with T%Start and ending with T%End, placing it in the
T%Vaue variable.

X "Set To/al ue=$E(" """" TuString """" ", TYStart, T¥%nd)"

Functions 253

$RANDOM

The $SRANDOM function returns a random integer in the specified range.
Format

SR{ANDOM} (intexpr)
Arguments

intexpr - A positive integer specifying the number of possible return values minus 1.
Explanation

The $SRANDOM function returns a random integer in the specified range. The argument,
always interpreted as an integer, specifies the number of possible return values. If the

argument is a positive integer X, the function returns a number between 0 and X-1. If the
argument islessthan 1, an error occurs.

Comments
Keep the following points in mind when you use the SRANDOM function:

* Thereturn value of thisfunction is not truly random, only arbitrary. Regular
patterns can sometimes be detected in extended sequences of so-called random
numbers.

* Thereturn valueis aways an integer O or greater, but mathematical operations can
be performed on this value to telescope it into any numeric range with any desired
distribution frequency or degree of sensitivity, so thislimitationisnot truly a
handicap.

Examples

The following example generates a random integer between 0 and 99:

SET T9Resul t =$RANDOM 100)
The following example generates a random decimal number between —10 and 10, with a
possible return value at every one-hundredth interval.

SET T9&Resul t =$RANDOM 2001) / 100- 10

The following example generates a random decimal number between 0 and 10, with 100
possible return values. The values are not evenly distributed: most of them are less than
1, but the number O is never returned.

SET TuResul t =10/ ($RANDOM 100) +1)

Functions 254

$REVERSE

The $REVERSE function reverses a string of charactersin the reverse order of the string
argument.

Format

SRE{VERSE} (expr)
Arguments

expr - A string to be reversed.
Explanation

The $REVERSE function reverses the input string so that the last character in the input
string becomes the first character in the result string. The second from the last character
in the input string becomes the second character in the result string, and so on, until all
characters have been reversed.

Comments
Keep the following points in mind when you use the SREVERSE function:

* The$REVERSE function is rarely used. However, turning a string around can
make it easier to manipulate.

* SREVERSE returns aresult identical to the input string when the input string isa
single character or anull string.
Related

SEXTRACT function

$LENGTH function

Examples

The following example gets the last character of a string.

SET T%Resul t =$EXTRACT($REVERSE(T%Resul t))
The following example shows an alternative way to get the last character of a string.

SET TY%Resul t =$EXTRACT(T%Resul t , SLENGTH(T%Resul t))
The following example gets the last piece of astring.

SET T9%Resul t =$REVERSE($PI ECE($REVERSE(T%esul t), To®el i m))
The following example shows an alternative way to get the last piece of a string.

SET TUResul t =$PI ECE(T%Resul t, T%Del i m $SLENGTH(T%Resul t, ToDel i n))

The following example determines whether the array node |%Elements(T%L oop) is
undefined (does not contain avalue) and, if so, exits.

| F ' SEXTRACT($SREVERSE($DATA(| %&l enent s(T%.o0p)))) QU T

Functions 255

Each of the following lines contains an alternative way to exit if the array node
[%Elements(T%L oop) is undefined.

| F $DATA(| %El ement s(T%.o00p))[0 QUI T

| F 11' [$DATA(| %El ement s(T%.oop)) QU T
| F $DATA(| %l ement s(T%.oop)) #2=0 QUI' T
| F $DATA(| %l ement s(T%.oop)) #10=0 QUI T

Functions 256

$SELECT

The $SELECT function returns one of several different values, depending on any
number of true or false conditions.

Format
$S{ELECT} (L tvexpr : expr)
Arguments

tvexpr - A condition to be evaluated if none of the $SELECT argumentsto the left of it
have true conditions.

expr - An expression to be evaluated and its value returned only if its associated
condition isthe first true condition.

Explanation

The $SELECT function evaluates its conditions from left to right until atrue condition is
encountered. At that point, it evaluates the expression associated with this condition,
returning its value. Expressions associated with false conditions are never evaluated.

Conditions to the right of the first true condition are not evaluated, nor are their
associated expressions.

In the following example, $SELECT returns the value even based on the true condition
of X>0:

SET X=2
DO Env. Qut put ($SELECT(X<0: "M NUS", X#2: " ODD", X>0: "EVEN"', 1: " ZERO"))

Resul ts: even
Comments

Keep the following points in mind when you use the $SEL ECT function:
e $SELECT hasno effect on STEST.

* $SELECT can sometimes replace several lines of code using | F and EL SE.

* $SELECT can sometimes be used instead of the two-argument form of $GET
with a performance improvement because the default value need not be evaluated
if the variable is defined.

* A return valueisrequired, so the last condition must evaluate to true. An error
occursif the last condition does not evaluate to true.

Functions 257

Related
|F command

EL SE command

$GET function
Examples

The following exampleillustrates atypica programming error that can occur because
$TEST islikely to change between the | F and the EL SE.

| F 19%ei ght' >l %W dth DO

DO TEST
ELSE DO $Env. Qut put ("Greater")

QT
TEST ; Subroutine containing |F and ELSE

| F 1 %Hei ght =1 %V dt h DO $Env. Cut put (" Equal ")
ELSE DO $Env. Qut put ("Not Greater")
QIT

Assuming that 1%Height=5 and 1%Width=10, the | F command on the first line sets
$TEST to 1 and the DO calls TEST. Inside TEST, the | F sets $TEST to 0, and the

EL SE performs awrite to the output window. The QUIT then exits TEST. The EL SE on
the second line checks $TEST (which is now 0) and performs a write to the output
window. Thefirst line of output is"Not Greater" and the second lineis"Greater”. Thisis
probably not what the programmer intended.

A number of language elements (method and property calls, extrinsic functions, and the
argumentless DO) place $TEST on the stack, avoiding the problem shown in the
previous example. Also, postconditionals and the $SEL ECT function can be used to
conditionalize certain operations without affecting $TEST . The following example
solves the previous problem by using the argumentless DO:

I F 19%ei ght' >l %W dth DO

. | F 1%ei ght =1 %% dt h DO $Env. Qut put ("Equal ") QU T
. DO $Env. Qut put ("Not Greater")

ELSE DO $Env. Qut put ("G eater™)

QUT

The following example using $SEL ECT is functionally equivalent to the previous
example, except that it does not modify $TEST.

DO
$Env. Qut put ($SEL(| %Hei ght > oW dt h: "Greater”, | %ei ght =I 9V dt h: "Equal ", 1: " Not
Geater"))

Functions 258

In the two-argument form of $GET, the value of the second argument is always
evaluated, (even if the variable is defined). This means that compute-expensive
operations should not be placed in the second argument. The following example uses
$GET, causing the SCALLBACK function in the second argument to be called and its
value ignored if T%CallBack is undefined.

SET T%Cal | Back=$GET(T%Cal | Back, $CALLBACK(MODI FY))

The following example might be more efficient because it uses $SELECT, causing the
$CALLBACK function to be evaluated only if the variable is undefined.

S Tu€al | Back=$S($D(T%Cal | Back) #10: T%Cal | Back, 1: $CALLBACK(MODI FY))

The following extrinsic variable returns a string containing the approximate time, based
on the second comma-piece of BHOROL OG. Note the use of $SELECT, $JUSTIFY,
and $TRANSLATE in this function.

TIME() ; TIME extrinsic variable
NEW Lo me, L%our, L% nut e, L%Veri di an
SET L% me=$PI ECE($HOROLOG ", ", 2)
| F L9 me#43200=0 QUI T "12: 00" _$SELECT(L%i me: "pni', 1: "ani')
SET L%Hour =L%i me\ 3600
SET L%eri di an=$SELECT(L%our >11: "pnt, 1: "ant')
SET L%our =$JUSTI FY(L%-our #12, 2)
| F L%our =" 0" SET L%our =12
SET LYW nut e=$JUSTI FY(L%Ti ne\ 60#60, 2)
SET L% i me=$TRANS(L%Hour _":"_L%M nute_L%eridi an," ", 0)
QU T L% me

Functions 259

$STACK

The $STACK function returns information about the underlying M process stack.
Format

$ST{ACK} (intexpr {, stackcodeexpr})
Arguments

intexpr - Specifies a process stack frame number about which information is desired, or
one of the special values 0 or —1.

stackcodeexpr ::= expr V stackcode - Specifies the kind of information that is requested
about a specific stack frame.

Explanation
The information provided by $STACK is principaly useful in debugging. However, the

EsiObjects process stack does not necessarily have any correspondence to the underlying
M process stack.

Internal EsiObjects optimizations can alter the behavior of the M process stack for a
given operation, and $STACK might change in future releases to explicitly support the
EsiObjects process stack. For these reasons, caution is advised when using $STACK.

In its one-argument form, the argument of $STACK determines the type of return value:

1 Returns the number of frames on the process stack (equivalent to
the $STACK special variable).
0 Returns a platform-specific value indicating the way in which the

process was originally invoked.

N Assuming n is a positive integer, the name of the command used to
create that stack level (in other words, DO or XECUTE), the
string $$ if it is an extrinsic function, or an error code if it is an
error frame. If n is greater than the number of stack levels,
NULL (") is returned.

In its two-argument form, the first argument is a stack frame number and the second
argument specifies the specific kind of information to be returned about that stack frame.
PLACE The location of the code that invoked that stack level. If it is the

current stack level, then the location of the currently executing
command is used. The location is of the general form:

{label} {+intexpr} {*routinename} SP + eoffset

Where eoffset is the character position of the place in the line
where the stack level was located, but its exact accuracy is not
guaranteed.

MCODE A string containing the actual line of code that invoked that
stack level. An empty string if the text is not available.

ECODE Alist of error codes added (to the $ECODE special variable) at
that level.

Functions 260

Comments
Keep the following points in mind when you use the $STACK function:

* $STACK ishandled by the underlying M platform. Therefore, use caution when
interpreting its return values.

e Theconstruct $STACK (-1) is equivalent to the special variable $STACK and
rarely is used.

e Theconstruct $STACK ($STACK) aways returns information about the current
M process stack level.
Related

DO command
XECUTE command

$STACK special variable
Examples

The following example displays information about the current error condition for every
stack framein $STACK that contains error codes.

DO $Env. Qut put (" Process Type: ", $STACK(0))

DO $Env. Qut put ("Frames on Stack: ", $STACK)

FOR T%.oop=1: 1: $STACK | F $STACK(T% oop, "ECODE") "' ="" DO
. SET T%Code=$STACK(T%.oop, " ECODE")

. SET T%.i ne=$STACK(T%.oop, " PLACE")

. SET T9%ext =$STACK(T%.oop, " MCODE")

. DO $Env. Qutput ("Errors at Franme "_T%.oop_": "_T%Code
. DO $Env. Qut put (" Executi on Location: "_T%.i ne)
. | F ToWdext' ="" DO $Env. Qut put (T%lext)

. DO $Env. Qutput (" ")
QT

Functions 261

$TEXT

The $TEXT function returns asingle line of code from the specified routine or current
code body.

Format

ST{EXT} (textarg)

Arguments

textarg ::= + intexpr [~ routineref]
Entryref
@ expratom V textarg

entryref ::= Dlabel [+ intexpr] [* routineref]
A routineref

Explanation

In EsiObjects, $TEXT is handled entirely by the underlying M platform, and appliesto
the intermediate M code, not to the EsiObjects source. Therefore, it isonly reliable to use
asfollows:

* Onlineshaving alabel and a comment beginning with two semicolons

* On any contiguous following lines that contain a comment beginning with two
semicolons, and no commands

Note the following:

* The EsiObjects source code on aline is not guaranteed to be present, but may be
present in future rel eases.

* Intermediate M source can appear, but only unreliably.

» Thereisno direct correlation between the lines in the EsiObjects source and the
linesin the M source, except on label lines containing a comment with two
semicolons, and on any contiguous following lines containing only a comment
with two semicolons.

Many source editors use the TAB character (ASCII character #9) as the line start
indicator. However, $STEXT always renders the line start indicator as a space (ASCI|
#32). If the argument of $TEXT addresses aline that does not exist, the function returns
NULL (").

Three forms of indirection are allowed with STEXT. The label and routine names, if
present, can be indirected. Also, the entire argument of $STEXT can be indirected.

Functions 262

Comments
K eep the following points in mind when you use the $TEXT function:

e S$TEXT dlowsitsown specia form of indirection (the entire STEXT argument
can be indirected).

* S$TEXT appliesto the underlying M code, not to the EsiObjects source. Therefore,
itsreliability isrestricted. In afuture release, STEXT may apply instead to the
EsiObjects source.

Related

Method structure

Indirectionlntroductiontolndirection
Examples

The following example uses $TEXT to set up an array in |%Elements.

INI T(Year) ; Set up | %kl enents
FOR T%.oop=1:1 DO QU T: T%\unber=""
. SET T%.i ne=$TEXT(+T%.o0p)
. SET TY%\unber=3$PI ECE(T%.i ne, "; ", 3)
. SET T%ext=$PI ECE(T%.i ne,";", 4)
. | F T9%unber="" QU T
. SET | %l enent s(T%.00p, " Days") =T¥\unber
SET | %El enent s(T%.00p, " Nane") =T%lext
| F Year #4=0, Year #100 SET | %l enent s(2) =29
CUIT

ELENENTS
,;31;January
. 28; February
;;31; March
;5 30; Apri
;315 May
;5 30; June
73 31; July
;3 31; August
;; 30; Sept enber
;; 31; Cct ober
;5 30; Novenber
. 31; Decenber

Functions 263

$TRANSLATE

The $TRANSL ATE function converts a string by changing all membersin one set of
characters to the corresponding members of another set of characters.

Format
STR{ANSLATE} (exprl, expr2{, expr3})
Arguments

exprl - A source string to be converted in some way.
expr2 - A string containing a set of characters to be changed in the source string.

expr3 - A string containing a set of characters to replace the set in the second argument.
Explanation

The $TRANSL ATE function performs a character-for-character replacement within a
string. It accepts a source string, a set of characters to change from, and a set of
characters to change them to. The trandated string is the return value. In the return value,
all instances of the first character in the ‘from’ string are changed to the first character in
the to string, then this processiis repeated for the second character in from, and so on.

DO $Env. Qut put ($STRANSLATE(" Macdonal ds", "sandMol c","oE i "))

Results: Ei E o

Any charactersin the ‘from’ string that are not opposed in the to string are trandated into
null strings (in other words, are stripped). If there are ten charactersin the ‘from’ string,
and only five in the to string, then the last five characters of from are stripped. Any extra
charactersin to areignored. If the third argument is omitted, it defaultsto NULL ("") and
all charactersin the second argument are stripped from the source string.

Comments
Keep the following points in mind when you use the $STRANSL ATE function:

* S$TRANSLATE convertsindividual characters. It is not a search-and-replace
function.

* Theprimary use of $TRANSLATE isfor doing case conversions. It can also be
used to filter illegal characters

Functions 264

Related
CONTAINS ([) operator

$FNUMBER function

$IUSTIFY function
Examples

The following extrinsic function shows how to use STRANSLATE. Thelabel XLATE is
called with the target string passed in as String and a U (to upper) or L (to lower) is
passed in the parameter To.

XLATE(String, To) ;

SET Lower ="abcdef ghi j kl mopqgr st uvwxyz"

SET Upper =" ABCDEFGHI J KLMNOPQRSTUVWKYZ"

IF To="U" QUIT $TRANSLATE(Stri ng, Lower, Upper)
QUI T $TRANSLATE(Stri ng, Upper, Lower)

Sometimesiit is necessary to determine whether a string contains a certain character. For
example, user input is often not allowed to contain the database delimiter. The
CONTAINS ([) operator is generally useful in such cases. However, it is occasionaly
necessary to test whether an input string contains one of several characters. In the
following example, STRANSL ATE is used to determine whether the input string STR
contains one of fiveillegal delimiter characters.

ILLEGDLM STR) ; Return 1 if STR contains delimters ~|\”~, 0 if not
QUI T STR=$TRANSLATE(STR, "~"|\"")

The following example uses $SFNUM BER with STRANSL ATE to format a number with
periods instead of commas in the thousands places and acommainstead of a period as the
decimal indicator.

DO $Env. Qut put (STRANSLATE($FNUVBER(6543210. 987,",",2),"..,",",."))

Resul ts: 6.543.210, 99

The following example uses $SFNUM BER with STRANSL ATE to format a negative
number with square brackets (instead of a minus sign).

DO $Env. Qut put ($TRANSLATE($FNUVBER(- 43210, "P"),"()","[1"))

Resul ts: [43210]

The following example uses $JUSTIFY with $TRANSLATE to pad a number with
leading zeros so that it is 5 characters wide.

DO $Env. Qut put ($TRANSLATE($JUSTI FY(123,5),0," "))

Resul ts: 00123

Functions 265

The following extrinsic variable returns a string containing the approximate time, based
on the second comma-piece of SHOROL OG. Note the use of $SELECT, $JUSTIFY,
and $STRANSLATE in this function.

TIME() ; TIME extrinsic variable
NEW Lo9i nme, L%Hour , L%V nut e, L%eri di an
SET L% me=$PI ECE($HOROLOG ", ", 2)
| F L9 me#43200=0 QUI T "12: 00" _$SELECT(L%i me: "pni', 1: "ani)
SET L%Hour =L%li ne\ 3600
SET Lo%weri di an=$SELECT(L%our >11: "pni', 1: "an')
SET L%our =$JUSTI FY(L%-our #12, 2)
| F L%Hour=" 0" SET L%our=12
SET LYW nut e=$JUSTI FY(L%Ti ne\ 60#60, 2)
SET L% me=$TRANS(L%Hour _":" _L%M nute_L%eridian," ", 0)
QU T LY ne

Functions 266

$VALID

The $VAL I D function determines whether a certain value is valid for a given property,
or whether a certain property/method is valid for an object.

Format

$VALID (vaidmpr {, expr})
Arguments

validmpr ::= Object . service

Expr

validmpr - An expression or areference to an object's method/property that isto be
tested.

expr - A value that might possibly be assigned to the property, whose validity isto be
tested.

Explanation

If the first argument of $VALID is an expression, then the type is a string and the
function returnstrue. If an object with serviceis specified, the return value is based on
the validity of the service or property assignment value. If the second argument is

specified, then the function returnstrueif its value could be assigned validly to the
object.

Comments

If the first argument is not an expression, then the object's $Valid accessor isinvoked to
compute the return value of $VALID. This means that the return value, while expected to

be true or false as appropriate, can vary according to the intent of the programmer who
wrote the accessor method.

Related

SNORMALIZE function
Examples

The following code attempts to verify that the valuein T%SSN constitutes an acceptable
value for the Social Security Number property for employee object bound to the
T%Employee variable before assigning it that value.

| F $VALI D(T%npl oyee. SSN, T%SSN) SET T%Enpl oyee. SSNETUSSN

Functions 267

$SWALK

The $WALK function allows privileged code to traverse the entries in a symbol table,
optionally including their subscripts.

Format

$SWALK (name, subscripts, typexpr {, direction})
Arguments

name - The name of the variable.

subscripts - An expression whose value is an entire subscript list, including the
parentheses.

A Accessor

C Class

CN Constant

G Global

I Instance
typexpr ::=expr V L Local

N NamePool

P Parameter

S System

U Universal

direction - The direction of the search. Use 1 for searching forwards (default) and —1 for
searching backwards.

Explanation
The $WALK function allows privileged code to traverse the entries in a symbol table,
optionally including their subscripts, similar to SORDER. It can be used with any

EsiObjects symbol, including templates and name pools. However, this function is not
recommended for general usein EsiObjects.

Comments
Keep the following points in mind when you use the SWALK function:

* $WALK isused to loop through al the instance variables of an object, all the
accessor variables of amethod, and so on.

* Once the names of the variables have been obtained with $WALK, their values
can be referenced with $L OOK UP.

Functions 268

Related
FOR command

$LOOKUP function

$ORDER function
Examples

The following example contains a FOR loop used to traverse the names of an object's
instance variables with SWALK, while L OOK UP is used to get their values (for those
that have simple values).

SET T%.oop=""
FOR SET T%.oop=$WALK(T%.oop,"","1") QU T: T% oop="" DO
. DO $Env. Qutput ("Var: " _T%oop_", Val: "_$LOOKUP(T%.oop,"","1"))

QT

Functions 269

SWATCHDETECT

The SWATCHDECTECT function allows an object to detect when it is being watched.
Format

SWATCH{ DETECT} (on/off, vector)
Arguments

on/off - Returns O or 1.

vector ;= label {*{interface::} method} - The callback label to invoke when awatch is
established or ignored.

Explanation

Because an object can be watched, it allows an object to tailor its behavior.
SWATCHDETECT returnstrueif it succeeds. Any watch or ignore causes the callback
vector to be invoked, which passes the event or property being watched.

The format of the watch detect callback parametersis asfollows:

|abel (obsrvobj,desc,event,state)

where:
Obsrvobj is the object that is observing the current object
Desc is a description string that has the following format:
"$SYSTEM>$HOOK"
Event is the name of the event of property
State is 1 if watched, 0 if ignored
Comments

Keep the following points in mind when you use the 3WATCHDETECT function:

* Any watch established prior to enabling SWATCHDETECT is not seen.
» Thebest place to establish awatch detection is in the CREATE method.

» Thebest place to turn off watch detection is during the DESTROY method.
Related

WATCH command

Examples

The following example establishes watch detection during the creation of an object.
; CREATE Met hod
| F $WATCHDETECT(1, Ent r y"ONWATCH)

; Set up Internal State
QT

The following exampl e establishes a watch detection during the creation of an object. The
OnWatch method is used to track what events are being watched on the current object.

; OnVat ch Met hod
ENTRY(Cbser ver, Descri pti on, Event, St at e)
| F STATE DO
SET | %Acti ve(Event, Cbserver)=""
ELSE DO
KILL | %Acti ve(Event, Cbserver)

Functions

270

Functions 271

$ZLENGTH

The $ZLENGTH function returns the number of subscriptsin astring containing an
array reference.

Format
$ZL{ENGTH} (exprl, expr2)
Arguments

exprl - A string in which the number of piecesisto be measured (ignores strings
enclosed in quotation marks).

expr2 - The delimiter used to break the string apart.
Explanation

The $ZLENGTH function counts the number of piecesin astring. The second argument
isadelimiter used to divide the string into pieces. In the string, anything enclosed in
balanced quotation marksis ignored when counting pieces. Delimiters are usually one
character in length. The only limit to the length of a delimiter is the maximum string size.

The number of piecesin astring is similar to the number of words in a sentence. In the
following example, the space character is used as a delimiter and the total number of
pieces equals 4:

John dropped the ball.
Note that in the following string, the parts enclosed in quotation marks are ignored when
counting delimiters:

"Don't | ook now," Sally said, "but John dropped the ball."
In the previous exampl e (the space character is the delimiter), the total number of pieces
equals 4.

The number of piecesis always equal to the number of nonoverlapping instances of the
delimiter not found inside quotation marks plus 1. The following table contains additional
examples.

String Delimiter Number of Pieces
one,"two"three . 3

"A("AB",1,2,3) , 4

~B(2,"Hello, , 4

Bye",3,"7,3,2")

A/"B/C"IDI"E"IF"IG/HN" / 5

If the second argument is specified as NULL (""), then the return value is always O.

Functions 272

Comments

The behavior of thisfunction is unspecified in cases where the delimiter contains one or
more quotation marks.

Related

SLENGTH function
$QLENGTH function
$ZPIECE function
Examples

In the following example, the FOR loop displays all the comma-delimited piecesin the
string contained in L%String to the output window.

FOR T9%.00p=1: 1: $ZLENGTH(L%String,",") DO
DO $Env. Qut put ($ZP(L¥%Btring, ", ", T% oop))

The following example removes the first space-delimited piece from the string contained
in L%String:

SET LSt ring=$ZPI ECE(L%String, " ", 2, $QLENGTH(LY%Btring," "))

Functions 273

$ZPIECE

The $ZPI ECE function returns one or more pieces from adelimited string (ignoring
nested strings).

Format

$ZPI{ ECE} (exprl, expr2 {, intexprl {, intexpr2})

Arguments

exprl - A delimited string from which one or more pieces are to be returned.
expr2 - The delimiter used to break the string apart.

intexprl - The starting piece position to return.

intexpr2 - The ending piece position to return.

Explanation

The second argument is a delimiter used to divide the string into pieces. Inside the string,
anything enclosed in balanced quotation marks is ignored when identifying pieces. Most
delimiters are usually one character in length, but the only limit to their length is the
maximum string size.

The number of piecesis similar to the number of words in a sentence. In the following
example, the space character is used as a delimiter:
John dropped the ball.

In the previous example, the total number of piecesisfour. Thefirst piece is John and the
last piece is Ball. Note that in the following string, the parts enclosed in the quotation
marks are ignored when counting delimiters:

"Don't | ook now," Sally said, "but John dropped the ball."

In the previous example, using the space as a delimiter, the total number of piecesisfour.

Functions 274

The number of piecesis always equal to the number of nonoverlapping instances of the
delimiter not found inside quotation marks, plus 1. The following table contains
additional examples.

String Delimiter Number First Last

of Pieces Piece Piece
one,"two",three , 3 one Three
~A(MAB",1,2,3) , 4 MA('AB" 3)
"B(2,"Hello, , 4 "B(2 "7,3,2")
Bye",3,"7,3,2")
AI"BIC"/DI"E"F"IG/H/N"] 5 A F'/G/H/N"

If the second argument is specified as NULL (""), then the return valueis always ("").
Comments

The behavior of this function is unspecified in cases where the delimiter contains one or
more guotation marks.

Related
$PIECE function

$QSUBSCRIPT function

$ZLENGTH function
Examples

The following FOR loop displays the root node and all the subscripts of the array
referenced in T%T arget.

FOR T%.oop=0: 1: SQLENGTH(T%Ilar get) DO
DO $Env. Qut put ($QSUBSCRI PT(T%ar get , T%.oop))
The following example removes the last subscript from the array node in T%Target.

SET T9%/lar get =$NAVE(T9drar get , SQLENGTH(T9%rar get) - 1)

Operators 275

Operators

Operators are symbolic characters that specify the operation to be performed and the type
of value to be produced from their associated operand or operands. This section describes
the following types of operators:

* Arithmetic Operators
* Relationa Operators
* Logica Operators
e String Operator
* Indirection Operator
The following table contains alist of the operators supported by EsiObjects.

Operators 276

Arithmetic Operators

Arithmetic operators perform arithmetic operations. The following table illustrates those
arithmetic operators supported by EsiObjects.

Operator Syntax
Binary ADD A+B
Binary DIVIDE A/B
Binary EXPONENTIATION A**B
Binary INTEGER DIVIDE A\B
Unary MINUS -A
Binary MODULO A#B
Binary MULTIPLY A*B
Unary PLUS +B

Binary SUBTRACT A-B

Operators 277

Binary ADD (+)
The binary ADD operator produces the sum of two numerically interpreted operands.

Format

operand + operand
Explanation

Binary ADD uses any leading, valid numeric characters (the digits O to 9, the decimal
point, the unary MINUS operator, the unary PL US operator, and the letter E) asthe
numeric values of operands. Then binary ADD produces a value that is the sum of the
value of the operands. If an operand has no leading numeric characters, binary ADD
givesit avalue of 0.

Related
Expression evaluationEval uatingExpressions
Examples

The following example shows string arithmetic on two operands that have leading digits.

DO $Env. Qut put ("3 APPLES"+"8 ORANGES")

Results: 11

The following example performs addition on two real, numeric literals.

DO $Env. Qut put (1044. 368+91. 36)
Resul ts: 1135.728
The following example performs addition on two defined local variables.

SET A=3.01, B=92. 7 DO $Env. CQut put (A+B)
Results: 95.71

The following example illustrates that leading zeroes on a numerically evaluated operand
do not affect the results the operator produces. It also shows operands without leading
numerics.

DO $Env. Qut put ("007" + 100 + "One" + " 10")

Resul ts: 107

The following example returns the total number of elements in two collections
(PRQUEUEL and PRQUEUE?2), which hold items that are going to be printed. The
method Total Elements returns the number of itemsin the queue.

DO $Env. CQut put (PRQUEUEL. Tot al El enent s+PRQUEUE2. Tot al El enent s)

Operators 278

Binary DIVIDE (/)

The binary DIVIDE operator produces the quotient that is the result of dividing two
numerically interpreted operands.

Format

operand A/operand B

Parameters

operand A - the dividend
operand B - the divisor

Explanation

Binary DIVIDE uses any leading, valid numeric characters (the digits 0 to 9, the decimal
point, the unary MINUS operator, the unary PL US operator, and the |etter E) asthe
numeric values of the operands. Then it produces a quotient that is the result of dividing
operand A by operand B. If an operand has no leading numeric characters, binary
DIVIDE assumesitsvalueto be 0.

Related

Expression evaluation
Binary MODULO (#) operator
Examples

The following example divides two integer numeric literals.

SET QPZ=355/113
DO $Env. Qut put (QP2)
3. 1415929035398

The following example performs division on operands with leading digits.

DO $Env. Qut put ("16 PIES"/"4 PECPLE")
Results: 4

The followi ng exanple gets the nunber of errors logged in the Errorl og object
since January 1, 1995. It divides the nunber of errors by the nunber of days
since January 1, 1995 to get the average nunber of errors per day.

SET T%ve=Errorl og. Count (from"1/1/95")/ Date. DaysSi nce("1/1/95)

Binary EXPONENTIATION (**)

The binary EXPONENTIATION operator produces the exponentiated val ue of operand
A raised to the power of operand B.

Operators 279

Format

operand A**operand B

Parameters

operand A - the operand designated as the base
operand B - the operand designated as the exponent

Explanation

Binary EXPONENTIATION uses any leading numeric characters (the digits0to 9, the
unary MINUS operator, the decimal point, and the letter E) as the numeric values of the
operands. Then it produces aresult that is operand A raised to the power of operand B. If
an operand has no leading numeric characters, binary EXPONENTIATION assignsit a
value of 0. If you attempt to raise a negative number to a non-integer power, an error
ocCCurs.

Related
Expression evaluation
Examples

The following example shows how to use exponentiation to find the square root of a
number

DO $Env. Qut put (16**. 5)

Results: 4

Operators 280

Binary INTEGER DIVIDE (\)

The binary INTEGER DIVIDE operator produces the integer result of the division of
operand A by operand B.

Format

operand A\operand B

Parameters

operand A - The dividend
operand B - The divisor

Explanation

Binary INTEGER DIVIDE uses leading, valid numeric characters (the digits 0 to 9, the
unary MINUS operator, the unary PL US operator, the decimal point, and the letter E) as
the values of the operands. Then binary INTEGER DIVIDE produces aresult that isthe
integer portion of the quotient of the division of operand A by operand B. It does not
return aremainder and it does not round up the result.

If an operand has no leading numeric characters, its value is assumed to be 0. An error
occurs if you perform integer division with a zero-valued divisor.

Related
Expression evaluation

Examples

The following example performs integer division on two real numeric operands.

DO $Env. Qut put (27. 82\ 16. 39767)
Results: 1

The following example uses binary ADD and binary INTEGER DIVIDE to perform the
rounding up operation to the nearest integer.

SET X=9. 996
DO $Env. Qut put (X+. 5\ 1)

Results: 10

Operators 281

The following example uses a function to round a value to a given level of precision.

RND(V, Prc) ; Rounds to a | evel of decinal point
SET Prcvl =10**(Prc\ 1)
QUT (V*Prcvl +.5)\ 1/ Prcvl

The following example rounds a value to the penny.

SET AVG=199. 748632
SET ADJAVG=((AVGF100+. 5)\ 1)/ 100
DO $Env. Qut put (ADJAVG=199. 75)

Operators 282

Unary MINUS ()

The unary MINUS operator negates an operand's numeric interpretation.

Format

—operand
Explanation

Unary MINUS uses any leading, valid numeric characters (the digits 0 to 9, the decimal
point, the unary PL US operator, other unary MINUS operators, and the letter E) asthe
numeric value of the operand. Unary M NUS then returns the additive inverse of this
numeric value. If the string has no leading numeric characters, unary MINUS assigns the
string anumeric value of 0.

Because unary MINUS returns a numeric value, it can be used to compare a string
expression to anumeric literal or other numeric expression.

Comments

Unary MINUS operator takes precedence over the binary arithmetic operators. A
numeric expression is scanned and any unary M INUS operator to the operand on its right
is applied. Then the expression is evaluated and aresult is produced.

Related

Expression evaluation
$FNUMBER function

Examples

In the following example, parentheses take precedence over unary operators. The string
in the parentheses is treated as one value (12BOATROPES). When the operand is
interpreted numerically, the string is scanned, a numeric value of 12 is encountered, and
then interpretation stops. The unary MINUS operator is applied to this value and returns
avaue of —12.

DO $Env. Qut put (- (" 12BOAT" " ROPES"))

Resul ts
-12

Operators 283

Multiple unary MINUS operators with an operand are applied in aright-to-left order. The
following examples show the use of binary SUBTRACT and multiple unary MINUS
operators:

DO $Env. Qut put (18- --10)

Results: 8

DO $Env. Qut put (18- ---10)

Results: 28

The following example reverses the sign of anumeric literal.

DO $Env. Qut put (- +100)

Results: -100

Operators 284

Binary MODULO (#)

The binary MODUL O operator produces the value of an arithmetic modulo operation on
two numerically interpreted operands.

Format

operand A#operand B

Parameters

operand A - the value on which the modulo operation is to be performed
operand B - the modulus

Explanation

Binary MODUL O uses any leading, valid numeric characters (the digits 0 to 9, the
decimal point, the unary MINUS operator, the unary PL US operator, and the letter E) as
the numeric values of the operands. If an operand has no leading numeric characters,
binary MODUL O givesit avaue of 0.

When the operands A and B are both positive, then the modulo operation is the remainder
of operand A integer divided by operand B.

Comments

Keep the following points in mind when you use the binary MODUL O operator:

» Theoperation isnot defined if operand B is zero-valued.
» Theoperation returnsa O if operand A is zero-valued.

* When both operands are positive, the modul o operation produces the remainder of
the integer division of operand A by operand B. Thisis not true if either operand is
negative.

Related

Expression evaluation

Binary INTEGER DIVIDE (\)

Operators 285

Examples

The following examplesillustrate the modulo operation with two positive operands. The
modul o operation produces a value equivalent to the remainder after division of operand
A by operand B.

DO $Env. Qut put (47#10)
Results: 7

DO $Env. Qut put (24#6)
Results: O

DO $Env. Qut put (15. 76#5. 5)

Results: 4.76

The following examplesillustrate the effect of the modulo operater on two operands
preceded with unary M1 NUS operators. The modulo operation is equivalent to the
following:

-(operand A#operand B)

DO $Env. Qut put (- 47#- 10)

Results: -7

DO $Env. Qut put (- 24#- 6)

Results: 0

The following examples show the effect of aunary MINUS on operand B. The
expression has the value -(-operand A#operand B).

DO $Env. Cut put (47#- 10)

Results: -3
DO $Env. Qut put (24#- 6)
Results: O

The following examples show the effect of a zero-valued operand A. TheresultisO
regardless of the sign of operand B. When operand B evaluates to O, the operation is
undefined and resultsin an error.

DO $Env. Qut put (" ALPHA" #10)
Results: 0

DO $Env. Cut put (0#- 10)

Results: O

Operators 286

Binary MULTIPLY (*)

Thebinary MULTIPLY operator returns the product of two numerically interpreted
operands.

Format
operand* operand
Explanation

Binary MULTIPLY uses any leading numeric characters (the digits 0 to 9, the unary
MINUS operator, the decimal point, and the letter E) as the numeric values of the
operands. Then it produces aresult that is the product of the two operands. If an operand
has no leading numeric characters, binary MULTIPLY assignsit avalue of zero.

Related

Expression evaluation

Examples

The following example multiplies two string operands with leading digits.

DO $Env. Qut put ("2 Years"*"8 Workers")
Resul ts: 16

The following example multiplies one string literal and one numeric literal.

DO $Env. Qut put ("7.5"*. 5)

Results: 3.75
The following example multiplies the valuesin two local variables.

SET H=10, W12 DO $Env. Qut put ("Area: "_H'W

Results: 120

Operators 287

Unary PLUS (+)

The unary PLUS operator gives its operand a numeric interpretation.

Format

+operand
Explanation

Unary PLUS givesits operand a numeric interpretation. It uses any leading, valid
numeric characters (the digits 0 to 9, the decimal point, the unary MINUS operator,
another unary PL US operator, and the letter E) to determine the numeric value of the
operand.

Comments

Because unary PL US returns a canonic representation of the value, you can use it to
ensure that a given subscript is stored as a numeric subscript.

Related
Expression evaluation
$FNUMBER function

Examples

The following example evaluates a string value as a numeric value.
DO $Env. Cut put (+"0030")

Results: 30

The following example evaluates a string value as a numeric value. Because the string
literal does not contain any leading numeric characters, its numeric valueisO.

DO $Env. Qut put (+" ABCDEFG')

Results: 0

Operators 288

Binary SUBTRACT (-)

The binary SUBTRACT operator produces the difference between two numerically
interpreted operands.

Format
operand A-operand B
Parameters

operand A - the minuend (the value from which operand B is to be subtracted)
operand B - the subtrahend (the value to be subtracted from the minuend)

Explanation

Binary SUBTRACT interprets any leading, valid numeric characters (the digits0 to 9,
the decimal point, the unary MINUS operator, the unary PL US operator, or the |etter E)
as the numeric values of the operands. Then it produces a value that remains after
subtraction. If an operand has no leading numeric characters, binary SUBTRACT
assumesits value to be 0.

Related

Expression evaluation

Examples

The following example subtracts areal numeric literal from an integer numeric literal.

DO $Env. Qut put (12. 756- 3. 75)
Resul ts: 9.006
The following example performs subtraction on two literals with leading digits.

DO $Env. CQut put (" 12 APPLES'-"4 ORANGES")

Results: 8

The following example subtracts quota from the total sales amount in the salesperson
object.

SET T%er f =Sal esper son. Tot al Sal esAnount - Sal esPer son. Quot a

Operators 289

Relational Operators

Relational operators perform relationship operations. The following table illustrates those
relational operators supported by EsiObjects.

Operator Syntax
Binary CONTAINS A[B

Binary EQUALS A=B

Binary FOLLOWS AlB

Binary GREATER THAN A>B

Binary LESS THAN A<B

Binary PATTERN MATCH A?PATTERN

Binary SORTS AFTER AllB

Operators 290

Binary CONTAINS ([)

The binary CONTAINS operator tests whether the sequence of charactersin the right
operand is a substring of the left operand.

Format

operand A[operand B
Parameters

operand A - the operand being tested to determine if it contains operand B
operand B - the operand being tested to determine if it is contained in operand A

Explanation

Binary CONTAINS treats operands as string values and gives them no special
interpretation. Binary CONTAINS returnstrue if operand A contains the character string
represented by operand B. It returnsfalse if operand A does not contain the character
string represented by operand B.

To produce atrue result, the characters in operand B must be in the same order asthe
charactersin the substring of operand A. If operand B is the null string, binary
CONTAINS always produces a result of true.

Comments

Usethe unary NOT operator with binary CONTAINS to produce a negative
CONTAINS (DOESNOT CONTAIN). You can express DOESNOT CONTAIN
using either of the following equivalent formats:

operand A'[operand B
'(operand A[operand B)

DOESNOT CONTAIN reversesthe truth value of binary CONTAINS applied to both
operands. DOES NOT CONTAIN produces atrue result if operand A does not contain
the character string represented by operand B. It produces a false result if operand A does
contain the character string represented by operand B.

Operators 291

Examples

The following example tests whether D contains C. Because D does contain C, the result
istrue.

SET C="MOTCR', D="MOTORCYCLE"
DO $Env. Qut put (D] ©)

Results: 1

The following example shows how to use DOES NOT CONTAIN to determineif a
string is not a substring of another string.

SET CODE ="- OK - Qperation Successful!"
IF CODE '["- OK -" GOTO ERROR

The following examples show that all strings contain the null string, even the null string.

DO $Env. Qut put (" CATALOG'["")

Results: 1

DO $Env. Qut put (""["")

Results: 1

The following example checksiif the file object's PrivString property containsaD and if
so it destroys the FileObject. If PrivString does not contain a D, the example asserts a
message that it cannot del ete the object.

| F T%ommand="Del ete" DO
. IF FileQj.PrivString["D' DESTROY Fil eQbj
. ELSE DO $ENVI RONVENT. Assert: ("No privs for delete operation.")

Operators 292

Binary EQUALS

The binary EQUAL S operator compares two operands for equality.
Format

operand=operand

Explanation

Binary EQUAL Sreturns aresult of trueif the two operands are identical strings;
otherwisg, it returns a result of false.

To produce atrue result, the character sequence in both operands must be identical. There
can be no intervening characters (including spaces). Binary EQUAL S does not imply any
numeric interpretation of either operand.

Y ou can use binary EQUAL Sto test for numeric equality if both operands have numeric
values. The following example produces aresult of true:

DO $Env. Qut put (07=7)
Results: 1

If the operands are not automatically converted to numeric values (as in the process of
evaluating numeric literals), you can force the conversion by using the unary PLUS
operator. The following example produces aresult of true:

DO $Env. Qut put (+" 007" ="7")
Results: 1

The following statement does not set both A and B to 7:
SET A=B=7

The previous statement sets A equal to true if thevalueof Bis7. A isset to faseif B has
some other value. If you want to set both A and B equal to 7, do the following:

SET (A B)=7

Comments

Keep the following points in mind when you use the binary EQUAL S operator:

* Youcan specify aNOT EQUAL S operation by using the unary NOT operator
with binary EQUALS. Y ou can express the NOT EQUAL S operation in two
ways:

* operand'=operand

* '(operand=operand)

Operators 293

* NOT EQUAL Sreverses the truth-value of the EQUAL S operator applied to both
operands. If the two operands are not identical, the result istrue. If the two
operands are identical, the result isfalse.

* Withthe SET command, the equal sign becomes an assignment operator that
indicates the assignment of the value of the right operand to the left operand.

» For example, the following statement sets variable A equal to Channel Islands:
SET A="Channel | sl ands"
Related

Expression evaluation

Examples

The following example checks a string to see if it is empty.

| F STR="" DO $Env. Cut put ("Enpty String")

The following example illustrates two uses of the equal sign. First, the example uses the
equal sign with the SET command to give two local variables the value of two strings.
Second, the example tests the identify of the strings using binary EQUAL S. Because the
strings are not identical, the result is false.

SET A="A56BC', B="ABC' DO $Env. Qut put (A=B)

Results: 0

The following example asserts the Y es/No dialog box and the user can click onaYesor
No button. The Assert method passes back a"Yes" or "No" and it is compared to the
literal "Yes'. The result of the comparisonis 1 if the user selectsthe Y es button or O if
the No button is selected. The valueis displayed in the environments output window.

Note: The Assert method's parameters are passed in by keyword. The Assert method is
found in the ESI library, in the primary interface of the Environment class.

DO $Env. Qut put ($Env. Assert (Text:"Save File?", Buttons: "Yes")="Yes")

Operators 294

Binary FOLLOWS (])

The binary FOLL OWS operator tests whether the charactersin the left operand come
after the characters in the right operand in ASCI| collating sequence.

Format

operand A]operand B

Parameters

operand A - the operand being tested to see if its characters follow the charactersin
operand B in ascending ASCII collating sequence

operand B - the operand that operand A is being compared to

Explanation

The binary FOLL OW S test compares the ASCII charactersin both operands starting
with the leftmost character. The test ends when a character isfound in operand A that is
different from the character at the corresponding position in operand B, or when there are
no characters |eft to compare in either of the operands.

Binary FOLL OWS produces aresult of trueif the first differing in operand A has a
higher ASCII value than the corresponding character in operand B (that is, if the
character in operand A comes after the character in operand B in ASCI|I collating
sequence). It produces aresult of falseif the first unique character in operand A hasa
lower ASCII value than the corresponding character in operand B.

If operand A isidentical to operand B, then atruth-value of falseisreturned. If operand
A is shorter than operand B, but otherwise identical, then atruth-value of falseis
returned. If operand B is shorter than operand A, but otherwise identical, then atruth
value of true isreturned.

Comments

Y ou can produce aNOT FOL L OWS operation by using the unary NOT operator with
binary FOLLOWS. Y ou can expressNOT FOLL OW S using either of the following
equivalent formats:

operand A'loperand B
'(operand A]operand B)

NOT FOLL OWS reverses the truth-value of binary FOLL OWS applied to both
operands. If all charactersin the operands are identical, or if the first unique character in
operand A has alower ASCII value than the corresponding character in operand B, NOT
FOLLOWSreturns aresult of true. If the first unique character in operand A has a
higher ASCII value than the corresponding character in operand B, NOT FOLLOWS
returns aresult of false.

Operators 295

If operand A is shorter than operand B, but otherwise identical, NOT FOLLOWS
returns avalue of true. If operand B is shorter than operand A, but otherwise identical,
NOT FOLLOWSreturns avalue of false.

Related

Expression evaluation

Examples

The following example tests to determine if the string HARPOON follows the string
HARP in ASCII collating order. The result istrue.

DO $Env. Qut put (" HARPOON'] " HARP")
Results: 1

The following example tests the collating order of numeric literals. Because 3 in 123
follows the corresponding 2 in 122, the result is true.

DO $Env. Qut put (123] 122)
Results: 1

The following example also tests numeric literals. Because the numeric literal 12 collates
before the numeric literal 2, theresult isfalse.

DO $Env. Qut put (12] 2)
Results: O

The following example tests whether the string CDE follows string ABC in ASCI|I
collating order. Because C in CDE follows A in ABC, theresult istrue.

DO $Env. Qut put (" CDE"] " ABC")
Results: 1

The following uses binary FOL L OW S to test for a non-null string. Because any string,
except the null string, follows the null, the expression T%Value]"" is true whenever
T%Valueis non-null.

QUIT: T%Value]""

Operators 296

Binary LESS THAN (<)

The binary LESS THAN operator tests whether operand A is numerically less than
operand B.

Format

operand A<operand B

Parameters

operand A - the operand considered the smaller
operand B - the operand considered the larger

Explanation

The binary LESS THAN returns aresult of true if operand A has alesser numeric value
than operand B. It returns aresult of false if operand A has an equal or greater numeric
value than operand B.

Comments

You can produce aNOT LESS THAN operation by using the unary NOT operator with
binary LESS THAN asfollows:

operand A'<operand B
'(operand A<operand B)

NOT LESS THAN reverses the truth value of binary LESS THAN applied to both
operands. It produces aresult of true when operand A is greater than operand B or when
operand A is equal to operand B. It produces aresult of false when operand A isless than
operand B.

You can usethe NOT LESS THAN operation to specify greater than or equal to.
Related

Expression evaluation

Operators 297

Examples

The following example shows the result of using a series of relational operators. All
expressions with binary operators are evaluated | eft to right. The first operation is 100<X,
the result of which is 0. The second operation is 0<10, the result of whichis 1.

SET X=0
DO $Env. Qut put (100<X<10)

Results: 1
The following example verifies that the password entered isaleast 5 charactersin length.

| F PwControl.textLength<5 $ENVI RONMENT. Assert (" Password nust contain at | east
5 characters") QU T

Operators 298

Binary GREATER THAN (>)

The binary GREATER THAN operator tests whether operand A is numerically greater
than operand B.

Format

operand A>operand B

Parameters

operand A - the operand considered the larger
operand B - the operand considered the smaller

Explanation

The binary GREATER THAN operator evaluates the two operands numerically. Binary
GREATER THAN produces aresult of trueif operand A is numerically larger than
operand B. It produces aresult of falseif operand A is numerically equal to or smaller
than operand B.

Comments

Usethe unary NOT operator with binary GREATER THAN to produceaNOT
GREATER THAN operation. Y ou can expressNOT GREATER THAN using either of
the following equivalent formats:

operand A">operand B
'(operand A>operand B)

NOT GREATER THAN reverses the truth value of binary GREATER THAN applied
to both operands. Y ou can use it to specify lessthan or equal to. NOT GREATER
THAN produces atrue result when operand A is less than operand B or operand A is
equal to operand B. NOT GREATER THAN produces afalse result when operand A is
greater than operand B.

Related

Expression evaluation

Operators 299

Example

The following example tests two numeric literals.

DO $Env. Qut put (1900>1950)

Results: 0

The following example tests two variables with the NOT GREATER THAN operator.
Because both variables have an identical numerical value, the result istrue.

SET A="99",B="112"
DO $Env. CQut put (A >B)
Results: 1

The following example testsif the number of elementsin the buffer is greater than 5 and
if itis, then removes one element.

| F Buffer. Total El enent s>5 SET T%bj =Buf f er. Renove

Operators 300

Binary PATTERN MATCH (?)

The binary PATTERN MATCH operator tests whether the string of charactersin the
left operand is correctly specified by the pattern in the right operand.

Format

operand?pattern

Parameters

operand - The string whose characters you want to test for a pattern
pattern - Can be one of the following:

a sequence of one or more patatoms

@expr_atom

where:

Patatom can be one of the following:
repcount patcharacter {...}
repcount string_literal
repcount alternation

where:

repcount is a repeat count

patcharacter is a pattern code character (a character
that represents a group of ASCII
characters)

string_literal is a quoted string literal

alternation is a set of patatom sequences to choose

from to pattern match a segment of the
operand string (provides logical OR
capability in pattern specifications)

@expr_atom is an indirect reference that evaluates to a sequence of one or
more patatoms

Explanation

Binary PATTERN MATCH returns true when the pattern correctly specifies the pattern
of charactersin the operand and returns false if the pattern does not correctly specify the
pattern of charactersin the operand.

Operators 301

Y ou can produce aNOT MATCH operation by using the unary NOT operator with
binary PATTERN MATCH asfollows:

operand'?pattern
'(operand?pattern)

NOT MATCH reverses the truth-value of binary PATTERN MATCH. If the characters
in the operand cannot be fully described by the pattern, then NOT MATCH returns a
result of true. If the pattern matches all of the charactersin the operand, then NOT
MATCHES returns aresult of false.

The binary PATTERN MATCH operation is performed by comparing the charactersin
the operand string against their expected values as described by the pattern.

* Repeat count
» Pattern Code Characters
e String literas
* Alternations
An aternation has the following syntax:

(patatom sequence {, patatom sequence} . . .)

Comments

If a pattern match successfully describes only part of a string, then the pattern match
returns aresult of false. That is, there cannot be any string left over when the pattern is
exhausted. The following expression evaluates to aresult of false because the pattern
does not match the final R:

"SUSH BAR'?. ULP2U
Related

Expression evaluation
Pattern indirection
INDIRECTION (@) construct

Examples

The following example produces a result of true. The string tested includes two numeric
characters, one punctuation character, two numeric characters, one punctuation character,
and two numeric characters.

DO $Env. Qut put (" 10/ 26/ 72" 22N1P2N1P2N)

Results: 1

Operators 302

The following example produces aresult of false. The first character in the tested string is
1 of the 52 uppercase and lowercase a phabetics, but the test has no provision for 2
characters.

SET B="LA" DO $Env. Qut put (B?1A)
Results: O

The following example produces a result of true.

DO $Env. Qut put (" 3672STK- 0067" ?2. N. 3ULP2. 4N)
The following example produces a result of false. The first two characters are
aphanumeric, but the third character is punctuation.

DO $Env. Qut put (" B4*" 23AN)

Results: O
The following example produces a result of true. The string STK matches the first three
characters, and the 1.E matches the remainder.

DO $Env. Qut put (" STK- 0037" 21" STK" 1. E)

Results: 1

The following example checks the text entered in control to ensure that it matches the
specified pattern (one or more al phabetic characters, a comma, and one or more
a phabetic characters).

| F Full UsernnmControl . Text' ?(1. A1","1. A) DO $Env. Assert("lInvalid Format") QU T
Pattern Code Characters

The following table describes the pattern code characters you can use with binary
PATTERN MATCH. Note that these codes are summarized by the mnemonic
"CLEANUP".

Character Specifies

C Any one of the 33 control characters (including DEL) or any of
the 128 8-bit characters

L Any one of the 26 lowercase, alphabetic characters from a to z
Any one of the characters in the ASCII set and all 8-bit
characters

A Any one of the 26 uppercase or 26 lowercase, alphabetic
characters from Ato Zorato z

N Any one of the 10 ASCII numeric characters from 0 to 9

c

Any one of the 26 uppercase, alphabetic characters from A to Z
P Any one of the 33 punctuation characters (including SP)

Operators 303

Binary SORTS AFTER (]])

The binary SORTS AFTER operator tests whether the left operand sorts after the right
operand in numeric subscript collating sequence.

Format

operand A]]operand B

Explanation

Binary SORTS AFTER compares two operands to determine if the first operand sorts
after the second in the subscript ordering sequence defined by the single argument
$ORDER function for the numeric collating sequence.

Binary SORTS AFTER produces aresult of true if the first operand sorts after the
second operand. Otherwise, it produces aresult of false. If operand A isequal to operand
B, then atruth value of falseis returned.

In anumeric collating sequence canonic number operands sort according to numeric
value, with negative numbers sorting first, followed by zero, then positive numbers. All
operands that are not canonic numbers (except the null string, which sorts before all non-
null string operands) sort after canonic number operands. If both SORTS AFTER
operands are not canonic numbers, then they sort in the same way as the binary
FOLLOWS operator.

Comments

Y ou can produce aNOT SORTS AFTER operation by using the unary NOT operator
with binary SORTS AFTER asfollows:

operand A']]operand B
'(operand A]]operand B)

NOT SORTS AFTER reverses the truth-value of binary SORTS AFTER applied to
both operands. If operand A isidentical to operand B, or if operand B sorts after operand
A, then NOT SORTSAFTER returnsaresult of true. If operand A sorts after operand
B, NOT SORTSAFTER returns aresult of false.

Related

Expression evaluation
Binary FOLLOWS(])
$ORDER function

Operators 304

Examples

The following example creates an array and shows how the binary SORTS AFTER
operator, the SORDER function, and the binary FOL L OW S operator sort the array.

SET | 98NODE(2) ="

SET | 98NODE(122) ="*

SET | 98NODE(123) =" "

SET | 98NODE(" +") =""

SET | 98NODE(" HARP") ="
SET | 98NODE(" HARPCON') ="

$ORDER Function

SET Tox=""
FOR SET X=$ORDER(| 9NODE(T%)) QUI T: T%="" DO $Env. Qut put (T9%)

Resul ts:
2

122

123

+

LAVP
LAMPOON

Binary SORTS AFTER Operator

DO $Env. Qutput (2]1]"")

Results: 1

DO $Env. CQut put (122]]2)

Results: 1

DO $Env. Cut put (123]] 122)

Results: 1

DO $Env. Qut put (" +"]]123)

Results: 1

DO $Env. Qut put ("HARP"]]"+")
Results: 1

DO $Env. Qut put (" HARPOON']] " HARP")
Results: 1

Operators 305

Binary FOLLOWS Operator

DO $Env. Qut put (2]"")
Results: 1

DO $Env. Qut put (122] 2)
Results: 0

DO $Env. Qut put (123] 122)
Results: 1

DO $Env. Qut put ("+"]123)
Results: 0

DO $Env. Qut put (" HARP"] " +")
Results: 1

DO $Env. Qut put (" HARPOON'] " HARP")
Results: 1

Operators 306

Logical Operators

Logical operators perform logical operations. The following table illustrates those logical
operators supported by EsiObjects.

Operator Syntax
Binary AND A&B
Binary INCLUSIVE OR AlB

Unary NOT ‘B

Operators 307

Binary AND (&)
The binary AND operator tests whether both of its operands have a truth value of true.

Format

operand& operand

Explanation

Binary AND produces avalue of true only if both operands are true (that is, have non-
zero values when evaluated numerically); otherwise, it produces avalue of false.

Comments

Y ou can specify the Boolean operation of NOT AND (NAND) by using the unary NOT
operator with binary AND. Y ou can expressNOT AND using either of the following
equivalent formats:

operand'& operand
'(operand& operand)

The negative AND reverses the truth value of binary AND applied to both operands. It
produces avalue of true when either operand, or both operands, are false. It produces a
value of false only when both operands are true.

Related
Expression evaluation

Examples

The following example evaluates two non zero-valued operands as true and produces a
value of true.

SET L= 1, R=-71 DO $Env. Qut put (L&R)
Results: 1

The following example evaluates one true and fal se operand and produces a value of
false.

SET L=1, R=0 DO $Env. Qut put (L&R)

Results: 0

The following example eval uates two fal se operands with a negative AND. It produces a
value of true.

SET A=0, B=0 DO $Env. Qut put (A’ &B)

Results: 1

Operators 308

The following example checks user input T%USRNM and T%PW against the user
object. If not valid, amessage is asserted.

| F User. User nane=T%JSRNM&Us er . Passwor d=T%”W DO

DOINT
ELSE $ENVI RONMENT. Assert ("I nvalid username or password") DO LOGA N

Operators 309

Binary INCLUSIVE OR (!)

The binary INCLUSIVE OR operator tests whether one or both operands are true.
Format

operand! operand

Explanation

Binary INCLUSIVE OR produces aresult of trueif either operand has a value of true, or
if both operands have the value of true. It produces aresult of false only if both operands
arefalse.

Comments

Y ou can produce aNOT OR (or NOR) operation by using unary NOT with
INCLUSIVE OR. To expressNOT OR use either of the following equivalent forms:

operand'!operand
'(operand! operand)

The NOT OR operation reverses the truth-value of binary OR applied to both operands.
If both operands are false, NOT OR produces aresult of true. If either operand is true or
if both operands are true, it produces aresult of false.

Related

Expression evaluation
Examples

The following example evaluates one true and one false operand and produces atrue
resullt.

SET L=1, R=0 DO $Env. Qut put (L! R)
Results: 1

The following example evaluates two fal se operands and produces a fal se result.
SET L=0, R=0 DO $Env. Qut put (L! R)
Results: 0

Thefollowing NOT OR example evaluates two false operands and produces a true result.
SET L=0, R=0 DO $Env. Qutput (L' ! R)

Results: 1

Operators 310

The following example shows how two tests can be combined. The example matches the
user name and password entered against the same information for the current uses. If they
do not match, then an error message is displayed.

| F UsrnnControl . Text' =Usr. Usrnm (Usr PwControl . Text' =Usr. Passwd)
ELSE $ENVI RONMENT. Assert ("I nvalid Login") QUT

Operators 311

Unary NOT (')

Theunary NOT operator inverts the truth value of the Boolean operand or operator it
modifies.

Format
‘operand
‘operator
Explanation

Unary NOT with an operand inverts the truth-value of the operand. If the operand is true,
unary NOT givesit avaue of false. If the operand isfalse, unary NOT givesit avalue of
true.

Unary NOT with an operator inverts the sense of the operation it performs. It effectively
inverts the result of the operation. The following table describes how the unary NOT
operator affects the meaning of the binary operators.

Operator Meaning
'& The expression is true when one or both operands are
false.

'l The expression is true only when both operands are
false.

'= The expression is true only when both operands are not
identical strings.

> The expression is true when the left operand is less
than or equal to the right operand.

'< The expression is true when the left operand is greater
than or equal to the right operand.

T The expression is true when the right operand is not
contained in the left operand.

| The expression is true when the left operand does not
follow the right operand in ASCII collating sequence.

? The expression is true when the left operand is not a
string in the pattern specified by the right operand.

Comments

Y ou can invert the meaning of any relational or logical operator using either of the
following equivalent formats:

operand'operator operand
'(operand operator operand)

Related

Expression evaluation

Operators 312

Examples

The following example tests the sum of two local variablesin the context of a
postconditional expression. Because their values do not equal 10, control transfers to the
linelabeled INV.

A SET A=4,B=3

DO A+B =10 | NV

The following example tests two variables with the NOT AND (NAND) operator.
Because one variable is true and oneis false, theresult istrue.

SET A=0, B=1 DO $Env. Qut put (A" &B)

Results: 1

The following example tests two variables with the binary AND operator. Because the
example places unary NOT with the false operand, the truth-value is reversed, and the
result istrue.

SET A=1, B=0 DO $Env. Qut put (A& B)

Results: 1

Operators 313

String Operator

String operators perform operations on strings. The following table illustrates the string
operator supported by EsiObjects.

Operator Syntax
Binary CONCATENATE A B

Operators 314

Binary CONCATENATE

The binary CONCATENATE operator produces aresult that is a string composed of the
right operand appended to the left operand.

Format
operand_operand
Explanation

Binary CONCATENATE givesits operands no special interpretation. It treats them as
string values. If the concatenated string is longer than string length supported on the
underlying M platform, an error occurs.

Examples

The following example concatenates two string literals.

DO $Env. Qut put (" OBJECT" _" ORI ENTED")
Resul ts: OBJECTORI ENTED
The following example concatenates two local variables, NAME and SUBS.
SET TONAME="~DD', TUSUBS="(1, 2, 3) ", TUGLOBAL=TONAVE_T¥SUBS
DO $Env. Qut put (TY%LOBAL)
Results: ~DD(1, 2, 3)

The following example concatenates two string literals and the null string. The null string
has no effect on the length of a string. (you can concatenate an infinite number of null
stringsto astring.)

SET T9%/="TECH'_""_"NOLOGY" DO $Env. Qut put (T%/)
TECHNOLOGY
The following exampl e sets the property FULLNAME in object user to the variable Last
and First, which are concatenated.

SET USER FULLNAME=T%.ast_","_T9%i r st

Operators 315

Indirection (@) Operator

The INDIRECTION construct is used to trandlate string data into executable code at
runtime. For example, a string can be tranglated into the argument of a command, or into
certain kinds of variable references. The @ is alanguage contstruct that is only used in
certain restricted contexts. Indirection gives the programmer alanguage construct that
can be used to generalize code, that is, defer execution until runtime based on the
execution context.

Format

@expr_atom

@expr_atom@(subscript{,...})

Parameters

expr_atom

The expression atom whose value isto be used
@expr_atom@(subscript{,...})

A string used to name an array node that descends from the variable referred to by
expr_atom

Explanation

Each occurrence of indirection in a statement is replaced with a corresponding value,
which isthen used in the statement. All occurrences of indirection must eval uate to:

* One or more command arguments (argument indirection)
* A variable name, routine name or label name (name indirection)

* A subscripted variable name prefix, terminated by a second @ (subscript
indirection)

* A pattern (pattern indirection)
Comments
In the evaluation of subscript indirection, if an expression atom refers to an unsubscripted
global or local variable, the value of the indirection is the variable name and all

charactersto the right of the second INDIRECTION (@) operator (note that an entire
expression may be used, provided that it is surrounded by parentheses).

Related

Binary PATTERN MATCH (?)

Operators 316

Examples

The following example uses argument indirection to call the routine at the label VALID
within the current routine.

HL SET T%IND="VALI D"
DO @%IND

The following example uses routine name indirection to call the routine at the first line of
the routine REB.

H2 SET DOAR="REB"
DO ~@0OAR
The following example sets T%W to the pattern for one or more digits and T%B to 10

and tests whether T%B meets the specified pattern. Because the operand evaluates to two
digits, theresult istrue and control passes to the label OK.

SET TOW"1. N', T9%8=10
| F T98?@W DO OK

The following example uses subscript indirection to initialize an array with some
defaults.

SET NAME"X(A)", A=10
INIT ; Initializes default val ues
SET DEF(1)="", DEF(2)=+$HOROLOG
SET DEF(3) =$PI ECE($HOROLOG, ", ", 2) , DEF(4) =" Unknown"
FOR | =1:1: 4 SET @NAMVE@ |) =DEF(1)
QT

Argument Indirection

In this type of indirection, indirection evaluates to one or more command arguments. In
the following example, MyNode(10,6) is set to the value 4.

SET ND="M/Node(10, 6) =12\ 3"
SET @D

Name Indirection

In this type of indirection, the indirection evaluates to a name. A name is any language
element that contains an uppercase or lowercase alphabetic character or percent sign (%)
followed by up to seven aphanumeric characters. Y ou can use name indirection for the
following:

e Variable names
e Linelabds

* Routine names

Operators 317

When you use indirection to reference a named variable, the value of the indirection must
be a complete global or local variable name, including any necessary subscripts. In the
following example, the variable DT is set to 10/16/92.

SET ND="DT", @\D="10/ 16/ 92"

When you reference aline label with indirection, the value of the indirection must be a
syntactically valid line label.

In the following example, ACT is set to the value of the line label that matches the state
of V. Control istransferred to the label sdlected.

SET ACT=$SELECT(V="green":"G0', V="yel | ow': "ACCL", V="red": " STOP", 1: "cauti on")

When you reference a routine name with indirection, the value of the indirection must be
a syntactically valid routine name. In the following example, control is transferred to the
routine VALID.

CHK SET ROU="VALID'. ..

0 @
Subscript Indirection

Thisform of indirection is an extended form of name indirection. The value of the
indirection must be the name of alocal or global array node. Subscript indirection is
syntactically different than the other forms of indirection. Subscript indirection has the
following format:

@expr_atom@(subscript,...)

where:
expr_atom evaluates to a local or global variable name, defined or
undefined
subscript is a string of one or more subscripts separated by commas

and enclosed in parentheses

Subscript indirection creates (or references) variables that logically descend from the
variable referenced by the expression following the first INDIRECTION operator. The
actual variable reference created depends on the list of subscripts following the second
INDIRECTION operator.

In the following example, the variable D(1,1) is set to the minimum of 100 or D(1).

SET ND="D(1)"
SET @D@ 1) =$SELECT(@ID>100: 100, 1: @\D)

Operators 318

Pattern Indirection

Pattern Indirection is a special form of indirection, unrelated to any other kind. The
INDIRECTION operator and its operand replace a pattern match and the value of the
indirection must be avalid pattern. The INDIRECTION (@) operator follows the
PATTERN MATCH (?) operator. For example:

SET PAT="3N1""-""2N1""-""4N', M5G="Inval id SSN'
| F VAL' ?@AT DO | NVAL

.QJI T
| N\VAL DO $ENVI RONMENT. Assert (MSG
For more information about pattern matching, see the description of the binary
PATTERN MATCH operator.

Class Element Indirection

Allows indirection to be used when dealing with class defined names. Class element
indirection allows the name of a classto be indirected when using the CREATE
command. This alows the creator of the object to specify the actual class name at run
time. For example:

; Function to return a shape object based on input

; T%hape: 0 = Box, 1 = Crcle, 2 = Triangle

SET

TY ass=$Sel ect (T¥hape=1: "MyCi rcl ed ass", T¥%hape=2: " St ockTri angl e", 1: "Box")
CREATE T%ut =@'% ass@

SET $RETURN=T%Qut

The names of properties and methods can a so be indirected when making service
requests. For example:

;Sorts the T9%.i st Cbject based on the value of T%What
; 0= A Normal sort, 1 = a ReverseSort

SET T%Acti on=$SELECT(T9%hat =0, "Sort", 1: "ReverseSort")
DO T%.i st. @%Acti on@

QT

; Looks up the value of a property of the |inked object
; TW%rop is the nane of the property to | ook up
SET $RETURN=I %.i nk. @'%°r op@

Operators 319

Parameter List Indirection

Parameter list indirection provides a mechanism whereby the parameter passed on a
service reguest can beindirected. Thisis useful for delegation, for example:

; Forward the current call to the |inked object

SET $RETURN=I %.i nk. Met hod @ $PARANG)
; Construct a paraneter |list and invoke a nethod

SET T%ar ans="20, 20"
DO Lo ndaw Nbve@ ToPar ank)

If the values are stored in temporary variables, rather than specified literally, the
following construct must be used to indirect the parameter list correctly. (Note that

$LOOKUP isaprivileged function.)
If T%x=20 and T%y=20, then
Set To®ar ams=$QUOTE($LOOKUP(" T9")) _", " _$QUOTE(SLOOKUP(" Toy"))

DO L9 ndow. Move @ T%Par ans

mailto:I%Window.Move@(T%Params
mailto:I%Window.Move@(T%Params

Index

YA O 183
PASNVECTOR ...oeeeeeeeeeeeeeeeeeeeeeeeaeeaaaaaenn 186
BASSOCIATE ..o eeaeaeaann 188
BCALLBACK ..eeeeeeeeeeeeeeeeeeeeeeeeeaaeeaaaaaaaaann 189
O AN I = = S 132
FCALLFRAME ... 133
O A = 191
L O N T 136
L (@] = 2 194
D N 1 N 195
BDELEGATE ..o 198
BDEVICE. ... eeereee s 137
BECODE ...t 140
PENVIRONMENT oo 142
BESTACK .ot 143
BETRAP . ..ot 144
e G Y I 199
SEXTCALLBACK ..o 201
BEXTRACT et e e e e ee e e e aaaaann 203
ey = I | 208
SENUMBER. ... eeeeeeeeaaaaaens 210
BFREECB ..ot 214
L €] = ISR 215
PGETENTRYREF ... 217
PHOROLOG ... eeeeeeeeeeeeeeeteee e 145
e NN =@ T 218
BINTERFACE ... 146
L 147
B S A e e aaan 220
L @] = T 148
BIUSTIFY et e e e e eeeeeeeeaaea s 221
L S) 2 149
I N[I 224
PLIBRARY ..o, 151, 193, 227
BLOOKUP .ot 228
PMAXNUM ..o, 153, 155
PMESSAGE.......c oo 156
BMINNUM e 157
BNAME. ..o 230
BNORMALIZEeeeeeeeeeeeeeeeeeeeeeeeeeeaaaaaan 232
BOIDPTR e e e e e e ee e e e e aaaa e 234
BORDER. ... e eeeeeeeee e e eeeeeeeeeeeeeaaaaaann 235
SPARAMETERLIST ... 159
SPARAMETERS.......ooeeeeeeeeeeeeeeeeeeeeeaaaaan 158
L = O =R 239
BPOINTER ..o eeeee e ee e e eeeanaaaans 161
= @@ 162
BPRINCIPAL ..o e eeeeee e eeeeeeanaaaens 163
BPRIVILEGEDeeeeeeeeeeeeeeeeeeeeeeeeeaaaaaans 164
BPTROID e eeee e eeeeeeeeee e e e e e e aaaaaans 244
BPTRSTR. .ttt ettt e ee e e e e eeeeee e e e e e aaaaaaann 245
BOLENGTH ..o 246

SQSUBSCRIPT ..ot 247

Operators 320

BQUERY ...ttt 248
BQUIT et 165
PQUOTE.......iceeeteeeteecteeceete e 251
BRANDOMviiiieeee e 252
FRETURN ..o 166, 167
PREVERSE.......oo o 253
K = I O [255
BSELF ... 169
PSTACK e 171, 258
PSTORAGEoo it 172
BSUPER ...ttt e et 173
BSYSPOOLovii ettt 174
BSYSTEM ..ottt 175
BT EST ..t 176
BT EXT ettt e e 260
STRANSLATE ..ot 262
BVALID oo 265
PBWALK e 266
SWATCHDETECT ..o 268
X s 179
) 180
SZLENGTH ..ttt 270
BZPIECE ...t 272
SZVIRDATA .o 181
ADD oo 276
AND oot 306
BREAK ...ttt 52
CLOSE ...t 53
CONCATENATE ... 313
CONTAINS ... 289
(O I 56
DESTROY ..o 61, 104
DIVIDE.....ciiiie et 277
DO

Argumentless........oovvveenineieneneeeee 68

Callbackseveeeiceieeeeee e 69

INtrOdUCLION ... e 63

Parameters......ovvveveieieieieieeeeeeeeeeeeeeeeeeeeeeeeen 68
ELSE ..ottt 72
EQUALS......oo e 291
EVENT oo 74
EXPONENTIATION.....ccoeeeevteie e 277
FOLLOWS......c ot 293
[| S 76
GOTO ..ttt 80
GREATER THAN ... 297
HALT ettt e et 82
HANG ...t 83
IF85
IGNORE ... 87
INCLUSIVE OR.....oveeeeeeeeee e 308
Indirection

ATQUMENE.....coiiiiiirieeiie et 315

Class Element........ccoceeveeieecvciie e 317

NAME ... 315

Pattern......coeeeeeeeeeeeeee e 317

ST 015 o] o 316
INPUL: e s 7
INTEGER DIVIDE.......ccooi i 279
JOB ...t 89
KILL ettt st 91
LESSTHAN ...t 295
LOCK ettt ettt 94
MERGE ...ttt 97
MINUS ..o 281
MODULO.....cciieiiee et 283
MULTIPLY oo 285

Operators 321

NOT e 310
OPEN ..ottt 101
1O o] {[0] SRS 3
PATTERN MATCH ..o 299
PLUS. ..o 286
QUIT e 106
READ. ...ttt 109
SET oo 112
SORTSAFTER ...ttt 302
SUBTRACT ..ottt 287
USE ..ot 117
WATCH ..ottt 120
WRITE. ... 124
XECUTE .ttt 127
ZAPPLY oo 129

	Introduction
	Document Conventions
	Language Concepts
	Interfaces and Services
	Method and Properties
	Code Body Structure
	Options Specification Block
	Input Specification Block
	Parameter Options
	Parameter Variable Assignment
	Example 1: Simple Parameter Passing
	Example 2: Array Parameter Passing
	Example 3: Using Keywords on Parameters
	Example 4: Using Keyword and Positional Parameters
	Example 5: Defaulting Parameter Values
	Example 6: Positional and Keyword Parameters
	Example 7: Unspecified Parameters
	Example 8: More Unspecified Parameters
	Example 9: Positional and Keyword Errors
	Example 10: Positional and Keyword Mapping

	Logic Block
	Four Types of Lines
	Line Syntax Examples
	Labels and Label Keywords - Introduction
	Labels in EsiObjects
	Label Keywords

	Introduction to Preprocessor Directives
	
	Instance and Class Variables
	Name Pool Variables

	Message Syntax
	Message Delivery Keywords
	Reserved $Unknown Method and Interface Name
	How to Tell Methods and Properties Apart
	Examples

	Callback Syntax
	Callback Types and Options
	Callback Ownership and Lifetime
	Documenting Callbacks
	Extrinsic Functions - Introduction
	Extrinsic Function Examples
	Syntax of an Extrinsic Function Callback

	Using Expressions
	Expressions
	Literals
	Evaluating Expressions

	Variables
	Syntax of a Variable Name
	Variable Names and Scoping Codes
	Value of Variables

	Variable Scoping
	Variable Scoping - Introduction
	Why Is Scoping Important?
	Implicit Scoping
	Explicit Scoping
	Scope Hierarchy

	Variable Inheritance
	InitClassVars and InitSysVars Methods
	NamePool Variables
	Grouping Code into Interfaces
	Interfaces and Inheritance
	Mix-in Classes and Multiple Inheritance

	Commands
	BREAK
	CLOSE
	CREATE
	DESTROY
	DO Command - Introduction
	DO Command - Parameters
	DO Command - Argumentless
	DO Command - Callbacks

	ELSE
	EVENT
	FOR
	GOTO
	HALT
	HANG
	IF
	IGNORE
	JOB
	KILL
	LOCK
	MERGE
	NEW
	OPEN
	PRESERVE
	QUIT
	READ
	SET
	USE
	WATCH
	WRITE
	XECUTE
	ZAPPLY

	Special Variables
	$CALLER
	$CALLFRAME
	$CHILDCNT
	$CHILDREN
	$CLASS
	$DEVICE
	$DOMAIN
	$ECODE
	$ENVIRONMENT
	$ESTACK
	$ETRAP
	$HOROLOG
	$INTERFACE
	$IO
	$JOB
	$KEY
	$LASTCHILDID
	Examples $LIBRARY
	$LOCALOBJECTS
	$MAXNUM
	$MEMORYOBJECTS
	$MAXSTR
	$MESSAGE
	$MINNUM
	$PARAMETERS
	$PARAMETERLIST
	$PEERS
	$POINTER
	$POOL
	$PRINCIPAL
	$PRIVILEGED
	$QUIT
	$REFERENCE
	$RETURN
	$ROOTOBJECTS
	$SELF
	$SHAREDOBJECTS
	$STACK
	$STORAGE
	$SUPER
	$SYSPOOL
	$SYSTEM
	$TEST
	$X
	$Y
	$ZVIRDATA

	Functions
	$ASCII
	$ASNVECTOR
	$ASSOCIATE
	$CALLBACK
	$CHAR
	$CLASSOID
	$COPY
	$DATA
	$DELEGATE
	$EXIST
	$EXTCALLBACK
	$EXTRACT
	$FIND
	$FNUMBER
	$FREECB
	$GET
	$GETENTRYREF
	$INFO
	$ISA
	$JUSTIFY
	$LENGTH
	$LIBRARY
	$LOOKUP
	$NAME
	$NORMALIZE
	$OIDPTR
	$ORDER
	$OSR
	$PIECE
	$PROTECT
	$PTROID
	$PTRSTR
	$QLENGTH
	$QSUBSCRIPT
	$QUERY
	$QUOTE
	$RANDOM
	$REVERSE
	$SELECT
	$STACK
	$TEXT
	$TRANSLATE
	$VALID
	$WALK
	$WATCHDETECT
	$ZLENGTH
	$ZPIECE

	Operators
	Arithmetic Operators
	Binary ADD (+)
	Binary DIVIDE (/)
	Binary EXPONENTIATION (**)
	Binary INTEGER DIVIDE (\)
	Unary MINUS (–)
	Binary MODULO (#)
	Binary MULTIPLY (*)
	Unary PLUS (+)
	Binary SUBTRACT (-)

	Relational Operators
	Binary CONTAINS ([)
	Binary EQUALS
	Binary FOLLOWS (])
	Binary LESS THAN (<)
	Binary GREATER THAN (>)
	Binary PATTERN MATCH (?)
	Binary SORTS AFTER (]])

	Logical Operators
	Binary AND (&)
	Binary INCLUSIVE OR (!)
	Unary NOT (')

	String Operator
	Binary CONCATENATE

	Indirection (@) Operator
	Argument Indirection
	Name Indirection
	Subscript Indirection
	Pattern Indirection
	Class Element Indirection
	Parameter List Indirection

	Index

