Meeting the healthcare challenge in a world of complexity!

TCP Bridge Programmer’s Guide

EsiObjects V4.0

ESI Technology Corporation
5 Commonwesalth Road
Natick, MA. 01760

www.esitechnology.com

Information in this document is subject to change without notice. Companies,
names and data used in examples herein are fictitious unless otherwise noted. No
part of this document may be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without the express written
permission of ESI Technology Corporation.

[0 2000 ESI Technology Corporation. All rights reserved.

EsiObjectsis aregistered trademark of ESI Technology Corporation.
DSM, Cache, MSM are registered trademarks of InterSystems Corporation.

Microsoft, Visual Basic, Windows and Windows NT are registered trademarks of
Microsoft Corporation.

Table of Contents

[TCP BRIDGE PROGRAMMER’S GUIDE.........cccooetieietieietieieteeeteeeteeeeeeeeiereeieneae 1

[l ST =N = Y N =T =i N — 1

[TABLE OF CONTENTS ...ttt eeeeeeseeteesenseseessnensessesssssessessssnssssensssseses 3]

[NN le Ve dTe NI 1]
DOCUMENT CONVENTIONcoovieieiereiieeeeeieeeeeeetsereeseesseesesecsensesecssensesesssesseseeseasans 1]

[[TCPBRIDGE OVERVIEW ..ottt eee e teneennenennanens 1

[M\VHAT IS THE TCPBRIDGE? ...ttt ettt ee et an e e nn et aneneanenenneneanans 1
[ISCOPE OF DOCUMENT ...ttt eaenetesenenesesesesesesennanssesensanesesensnane 1
[TN = o 2|

[ICOMMUNICATIONS DIAGRAMcoivitieieceieseseresernesesesesssssssssssssssssssssesssssesssesesssssssssssssssssesasssees 2
[[THE BRIDGE, THE BROKER, AND PROXIES ...ttt 2
| |i [T =TT Lo 2
N8 BIOKEY ...ttt ettt ne et et e e reereeneeereeneereereenrereas 3

FOXI B 3
DT N 2 =T 3
HAT IS EOSUPPORTccveitieieitesteetesteeeestesseessessessessesseesessessssssessssssessesssessessesssessessssssesnssssessen 3

[BASIC OPERATIONS........ooveeeeeeeteeeeeeeteeeeeeteeteeeeseeteesesseseessensessesessnssesesessessensssssesenes 4

[IGETTING STARTED INVB ..oooeeeteeeeeeeteeeeeeteeseseereeseseeeneesesesanaesesncessesnsnsnsessnsnsnssssnsnenssssnenensseses 4]
[jAdding the TCPBridge to the Components Tab. ..o 4
Updating the References Dialog to Include EOSUPPOIt........ooooiviiiiii 6
AddiNg @ Bridge to YOUI PrOJECLcciiuiitiiiieieieeeeeteteet ettt eeeenea 6
ONNECTING TO THE SERVER. ..o 8

e ESIODJECIS TCP LISLENEYcccviivieieciecieeiecteectecteeee et cteee e eteeaeesteereeeeereeneasteeneensesteeneensens 8
AULOMALT C CONNECTION. ...ttt et e e et e sreeseeteeneeseereessesresseenresreensesseans 9
e T e T= et (o 9
VEITYING thE CONNECTION ...ttt ettt et ereseesrenrenreneens 10
MWhat to Do if the Connection FailS?ccoooviiiiiiiiiecc e 10
QECONNECT_l NG FROM THE SERVERccveiteeteiteeteeeteiteeeeereeseeeseeseesseeseeseensesseensesseseessessesssessens 11
Xplicitly DISCONNECHNG ..o 11
AULOMALIC DISCONNECLION..........eeieeieeiiie et e ciee et e st e sstee e st e et e esateeeteeesseeesnseeensenesseeenseeans 11
The effects Of DISCONNECHIONc.coeeeiiieieeceeecee ettt ete et e e e reeeesreeneennas 11
I =T e = s O =N oy 11
2 11
JUSING LOOKUPOBIECT ... 11
|ocating System VariablES...........ovoveieeeeee e 12
|_0Cating Class ODJECES.......cc.eeiiiiiiiiieeieecteecteceee ettt etee et e et e e st e eeteesneeeneeenreenseenseesseeas 12
Locating an O% Name. ... 13
[TRAPPING SERVER ERRORSc.titiutiteiiitecsieeeteceteeetesesteseeieseeseseesessesessenessesessesesseneasenessenessens 13
What are Server Errors?........................ OO PP PP PP PO PO PP PO PO PP PO PPPPEPPPPO 13
Adding an Event Handler 10 Trap SErVEr ErTOrS.......oovecuvceeeveeiieeceeeeeeceee et 13

[CREATING AND DESTROYING OBJECTS (LIFESPAN SERVICES)................ 14|
MPLECREATEOBUIECTcuveuietietieteeteeteteeeseeseeseesessessensesseseeseesesseasessessensessessssessessessensensenseneens 14_1|

CE YL &L= — 15
OISO =N = ST 15
T S L= 16
DESTROYOBUIECT ...ovoeeeeeeeeeeeeeeeeeeseeeeseeeeseeeeseeanseeeneneanseesnenseneessnenssneessnenssnenssnenssnensenensseceseneer 17
L L= 17
USING THE BRIDGE WITH PROXIES........cccoooevieieeeeeeeeeeeeee et 18|
ONCEPTSeueueeeeeueeteeteeteeteeteeeaseaseseeseeseeseeseesesessessessessesseseseeseesessensensensesseseaseesesensessensensenens 18
EEEFAU Y= 18
XBIMIIIE .. ovvooveoveesreesresereeeesseeseeeseeeeenseeseeeseeeseeeeeeseeseeeseeesseeseeeseeeseesseesseesseeeeeseeeseesseesseesseees 13
INVOKING OBJECT SERVICES......cuittetiteteieietaiteseststsesesesesesesessereseresesesenessesssssssssassssssssssssssssens 18
PrIMANY INEEITACE. ... e ittt e e et e et e et eeeteesneeeneeesreeaseesseeaneeaneeenseenseesrenss 19
OtNEr TN ACES ... ittt et e et et eesreesneesnreenreereesreeareeas 19
LJ_%NG PARAMETERS . 19
[Lo e I e T T = U= 19
OIS ParAMEIET'Sooooooooooooooosooosooooosooooosooesooesoossoseeseessesoesseesseesoeesoeseoemsoeseeseesseen 20
EMpLy Parameters. .o 20,
IMIXE Parameter USAGE.......ccuecueecieiiicieciicieeteeteete et eeeete e eteeteeeesteereetesteenaestesseesesseeneeseas 21
BULK DATA TRANSFER MECHANISMSouiiiiiiiiiccicscscccecececececceaeeas 22|
EOENCEPTS .. 22
ulk Transfer Type; ... 22
TTANSIEr DYNAIMICS. ...ttt e eetee e st e seteeesseessssesesnesesseeesasesesasessssesssnesesnsesesseresns 22
COMMON CONVENTIONS.........ceevieteeeteeitieiteeeteeeteeeteeeteesteeeteeeneeeseeaseesseesseesseesseenseenseesseesseesrenas 23
Common Error Handi [ATe TR T 23
ICreating BTO OD]ECES 1N VISUAI BASIC ..o oeesnsnnooen 23
AR A= AT (e T 23
ICOMMON ERROR IMETHODSuvuvieieieseassssisssssssssssssssesssssssssessstssstsessssstestssssesessssssttsesesssssiss 24
[1oL T 24

ULK TRANSFER OBJECT (BTO) REFERENCEc.cccviitieieteeteeteeteeeeeteeeestesreesesseeeessesneessesees Zg
'ési [25
SINVLISE ...ttt ettt e et esateeeateseeseeesasesesnesesnsesssesesnsessnseeesnseesnresesnseesnreesns 27|
%able ... 32
S 33

S SEMEAMN.......covieieeceeeceeet ettt et eeteeeneeenteeteesteesseesaseenseenbeeabeeaneeaneeenreenreereeareeas 42
EVENT PROCESSING........covoueuieeeetieeereeeereeesetensessesessesssesssesssesssessssessesssssessseenes 50|

O TS AT 50
FOCESS HESCITITION. ... ittt e ee et et et e eeeeeesteeneeseeeneeeeseeeneensesseeneesreeneensenns 50

|I D18 EVENT QUEUE.....ooooosooooooooooooooooooosooooosooosooosooes oo oeesoesooesoesooemsoesoesensesesemsoesoesoerioe 52
HE EVENTOINK oo 52
Event Sgnature Information (callback fOrmat).............c.c.cvevevevereevieereieiererieieeeeeeeveenane 52
R T T T 53
GELWALCNI ...ttt e et ene e e e sreeneesreeneesreeneereresres 53
e 53
TONORING.........o0.oovmeseerseemseeeseeeneeeseeenseeeseeeneeesseeenseeeseeeseeeneeeseeeseeeseeeneeeeseeeneeeseeenseeneeeseeeneeereees 55|
Egnore ... 55
L e AT 56

%AM PLE OF EVENT SETUP . Sﬂ

AMPLE OF EVENT CLEANUPcuitiiiee it e cieeeteeeetteesteeesneeesnaeeeeeeeanseeeseeesnseesnseesansessnsesenses 56

USING THE BRIDGE WITH PROXIES DISABLED.........cvveveeieeeeeeteceeeeeeeeeeeeeese e 58
NVOKEMEINOU.c.eeeieiccecee et ee e e et eeteesneeeneeenteenteesreesreesreseneeeneeenes 59

P OPEI TYGGEL ...ttt e ettt e e ettt e eeaeeeeessbeeee e nnreeeeannreeeeannreeeeannreeesannreeeeannresesannres 59
OIS TS < PP PPPRPPPT 59
L0 o L= 59
JUNSUPPORTED BEHAVIOR wvovvoovoovooooooooooooosooesoooooooosooesosesosesoesoessesoeesseessemsoesoesseesseesoensoeneees 59
Property Accessors not currently supported. ... 59
Out & IN/OUL PAramEter PASSINGeeveerieieirietieereeteeeeeteeeeereeseenseeteesresreeseeasesseessesseeseesees 59
IACCESS FROM ASP PAGES......iiiiiuiuiiiiiieseiesesessisosesesesessssessssssssssssessssssssssssssssssssssas 60|
[J_SENG L TN 60
(010725 TP PP 60
N =N = 63|

[THE TCPBRIDGEc.vvevevieviiteteeeeteteteeeeteteseesesesesessesssesessesssesessesssesessasssesensesssesensasssesensasssesenees 63
Lo L T 63

0O L= 64
1T PP 65)
[THE BROKERtteeieitesesssssssessssssssssssssssasssssssessststasssstessststasssssstestatstsssts testatstsesesssttstststsesssssiss 67
[T T 67

|I HE TOPLINK ..ottt ettt eeteeteestesteeteetasseeseanseeseesesseensessesseensessesseensesseesessesneensessen 74
N A= 74
Elethods .. 74
TOPETTIESoovoooowoseeereesseemseeesseerseeeseeeseeeseeesseesseeeseeenseeeseeesseeeeeerseeneeeseeenseeeseeerseesseeeseeesreeees 75|

Introduction

Thisguide is designed to assist the EsiObjects programmer in using the TCP
Bridge to build object oriented application systems. It contains the following:

An overview of the TCP Bridge.

The concepts of the TCP Bridge.

Description and instructions on how to use the basic bridge operations.

How to perform lifespan operations.

How to use the bridge with proxies.

Description and how to use Bulk Transfer Objects in conjuction with the bridge.
How to use event processing through the bridge.

How to use some advanced features.

How to access the model side functionality from Active Server Pages.
Reference information on the bridge itself.

Document Convention

EsiObjects documentation uses the following typographical conventions:

For more information on
this subject please refer to
the BREAK Command
section of this Guide.

Underlined text is used to highlight areference to
another section of this manual or another guide.

Property In text, italicized words indicate defined terms that
are usually used for thefirst time. Words are also
italicized for emphasis.

CREATE Words in bold and capitalized are EsiObjects

commands or keywords.

Set T%lest =I %Pat . Nane

Thisfont is used for code examples.

TCP Bridge Overview 1

TCP Bridge Overview
What is the TCPBridge?

The TCPBridgeisan ActiveX® component. ActiveX controls are among the
many types of components that use COM technologies to provide interoperability
with other types of COM components and services. In EsiObjects, this COM
component allows for interoperability between COM components such as Visual
Basic (VB) forms and the EsiObjects server. This connection between the COM
component and EsiObjects is done via TCP/IP.

The bridge is actually made up of severa components that allow for efficient and
specialized servicesto the server. These components are all described in this
document.

Using the bridge, a COM component or service can connect to the EsiObjects
server and have accessto the basic servicesin ESiObjects. object creation and
destruction, operations on methods, properties, and rel ationships, events and
more. The bridge supports only one simultaneous connection to a server.
Multiple bridges may be used to make multiple connections if needed.

The bridge, when connected to the server, occupies one M process that handles
the communi cations between the bridge and EsiObjects. Thus the objects created
within this process are valid only in the bridge that issued them, unless the object
is created as a shared object (more on this later.)

Scope of Document

This document describes the basic usage of the bridge and gives examples using
Visual Basic. Using this guide you will learn how to:

e Connect and disconnect a COM component (a Visua Basic application) to an
EsiObjects server.

e Lookup, create and destroy objects.

e Use proxy objects on the client to invoke methods, set and get property values, set
relationships on server objects.

e Useevent processing.
» Usebulk datatransfer objects that are supplied with the bridge to alow the transfer

of bulk data across from the server for manipulation on the client, and then back to
the server.

* Usethe bridge to access objects on the server viaan API instead of proxies (earlier
versions of the bridge did not use proxies.)

» Access the EsiObjects server from Active Server Pages (ASP.)

e Thedocument aso includes a reference guide that details the services provided by
the bridge and its components.

Concepts 2

Concepts

Communications Diagram

The diagram below shows how the TCP Bridge relates to the EsiObjects server.
The control isloaded onto a VB form. The control is connected to a TCP Listener
process running on an EsiObjects server. Once connected, the VB programmer
can access the Broker object within the control. The Broker is the object that
routes requests from the client to the server. A VB Proxy object mapsto a server
object. Operationsinvoked on the proxy are sent, viathe broker, to the servant
object. The operation is executed on that object any result is returned back to the
proxy.

Not shown in the diagram are the Bulk Transfer objects that the bridge provides
for retrieving and sending collections of datato and from the server. These
objects are described later in this guide.

EsiOhjects Server
Server
TCPAP || 1o s
Listener

The ActiveX control isloaded on aVB form and uses TCP/IP to connect to a TCP
listener that is running on the EsiObjects server. Proxies are used to invoke
operations on objects within the server.

The Bridge, the Broker, and Proxies
The Bridge

“Yisual Basic Form

Braker

The Bridge object in the control provides a number of operations and properties
for connecting the VB application to EsiObjects. These operations and properties,
listed in the Reference section below, are used to connect to and disconnect from
EsiObjects. Thisobject isthe root object for connecting to the server. It must be
connected first before the bridge can be used with EsiObjects.

Concepts 3

The Broker

The Broker object isthe main object used to access EsiObjects functionality. It
handles object requests (invoking methods, setting properties, etc.) from the client
to the server.

Proxies

Proxies are generic COM objects that provide direct access to an EsiObjects
object. Calls made on a proxy (for example, setting a property) are forwarded to
the server for processing. The proxy provides a direct mapping between an
EsiObjects object and a COM object. These proxies are actually created by the
Broker (transparent to the programmer.) Thus all proxies share a common
connection to the server viathe broker. Invoking an operation on a proxy will
cause the corresponding operation on the servant object to be executed.

Data Types

Most datais passed to and returned from EsiObjects as Variants. A handleto a
server object is transported by itsobject id. In addition, the control provides a
number of datatypes for bulk transfer objects that are used to provide an In/Out
call dynamic.

What is EOSupport

Within the control thereis a supplied library EOSupport that provides a number
of COM objects to support bulk transfer operations, including large text objects,
and streams. These objects are described in detail later in this guide.

Basic Operations 4

Basic Operations
Getting Started in VB

This guide describes the use of the TCP Bridge within aVisua Basic
environment. Please refer to your product documentation if you are using another
product that uses ActiveX controls.

Adding the TCPBridge to the Components Tab

Once the control has been installed from the EsiObjects installation kit, and
registered, you should add the control to the componentslist within VB. Thislist
contains al the controls available to you for your usein VB.

Components |

Controls | Designeml Inzertable DbiECtSI

[IDHTML Edit Conkrol For IES

[] DiffMergecCt Ackivel Contral madule

[DirectAnimation Library

[Disk. Management Snap-In Object Library J -
.) wo f=

[Jdkcint 1.0 Type Library

ESI TiCP Bridge Activex Control module = = =
[IFUpl Contral Library =
[l GridoTC s [

[aridListct

[HttpContraol Sctivel Contral module

(]I GiChannelsOCy Activer Conkral module
[1coWebSearch Active Control rmodule

[]15tudio Active Designer Contrals _ILI
1] | ; [T Selected Items Cnly

—ESI TCP Bridge Activer Control module
Location: DiiEsiObjectsy4, ObetalESITCPEridgell, oo

] Cancel Apply

The Components Dialog

To add the control to the component list, perform the following steps:
1. Fromthe Project menu, select the Components option.

2. If your control was properly installed and registered, you should see the control listed
as“ESl TCP Bridge Active X Control Module”. Check this item (as shown above).

3. Select OK

Basic Operations 5

The TCP Bridge icon should now appear in the VB control toolbox (see picture
below.)

| H
General |

The VB Control Toolbox.

Theicon at the bottom right is for the TCP Bridge.

Basic Operations 6

Updating the References Dialog to Include EOSupport

If you want to make use of the bulk transfer objects supplied in the control, you
will need to add the EOSupport to the project references.

References - Project]

I
fvailable References:
[]DTCSery 1.0 Type Library ;I Zancel |
[DTMsFE 1.0 Type Library
[D%TMsfES 1.0 Type Library
[]Effect Library = Browse. .. |
[JEngire 1.0 Type Libear
S+ |
[C]EsiMsmlnterface
[JEudoradE 1.0 Type Library Friority
[JEventSystem 1.0 Type Library Help |
[(JExport 1.0 Type Library ﬂ

[1faxadmin 1.0 Type Library
[JFacom 1.0 Type Library

[JFILEMEMT 1.0 Type Library
|_|rILI|:|I Control Library _ILI
4 3

—ECSuppaork

Location: [n\Esiobjectsi4,0beta'EosupportU, dil
Language: Standard

The Project References Dialog

Follow these instruction to add EOSupport to the project:
4. From the Project menu, select the Refer ences option.

5. Check the “EOSupport” item as shown above.

6. Select “OK”

The Object Browser (under the View menu) should now list the EOSupport
library.

Adding a Bridge to Your Project

Now that you have the control available to you on the toolbox, placing it within
your project is as simple as adding any control to your form. The following
outlines the steps to add the bridge to your project.

1. Select the Control Icon

2. Add to your Main Form

3. Configure the properties of the Bridge

4. Make surethat Object Proxies are enabled (the UseProxies property.).

Basic Operations 7

Since the control is hidden at runtime it doesn’t matter where it is placed on the
form.

Configuring the properties of the control is an important step. Below isapicture
of abridge control that has been added to a VB form. The Properties dialog
allows you to configure the control’ s properties.

w Project] - Forml [rnrm} - ||:||£I
ol :4
et T | lestickendged EsTcRdge]
'.ﬁ":'.::::::::::: Alphabstic | Categortzed |
.................... l:"-"t':'.":]
W Custom)
s r— ESITCRRr]
B Apicress 1270001
L] —— -
B Conmacied Falka
B Iridiex
B Laft 121

Port G000

PFrooyDafauitialue | Trus

Relrmbullsring Faks

Tag

Top 120

| by s Falks

|nmunmmnt

Bridge Control
The TCP Bridge placed on a VB form and selected, showing the Properties dia og.

Name — the name of the control.
Address — the TCP/IP address of the EsiObjects server.

AutoConnect — setting this to TRUE will cause the control to automatically connect to the
EsiObjects server when the formisloaded. The control will attempt to connect to the
EsiObjects listener running on the specified Address and Port. A setting of FALSE will

not connect the bridge to the server automatically.

Connected — a read-only property. TRUE indicates that the bridge is connected to the

server.

Basic Operations 8

* Port —the TCP/IP port where an EsiObjects listener isrunning waiting to accept a

connection

* ProxyDefaultVaue—if set to true proxy objects will have the OID string of the object

which they proxy astheir default value.

* ReturnNullString — if set to true a null string on the server will be returned as an empty

variant. If set to false a Null variant is returned.

» UseProxies—if set to TRUE, you can use the VB proxy objects to map directly to objects
on the server. Generally this should be set to TRUE unless you are using VB code that
was written under an older version of the bridge that did not make use of proxies. In that

case, communications with server objects was done via a functional API.

Configure the above properties according to your environment.

Connecting to the Server

Once you have properly installed and configured the control within your project,
you should determine how the control will connect with the EsiObjects server.

The EsiObjects TCP Listener

The EsiObjects listener is aprocess that is started up within the EsiObjects
environment on a specific port. This process then listens on the port for incoming
connections and processes requests.

Using Cache

Within Cache environments, the server is started up using the following
command:

DO STARTAVESOTCSV(port _nunber)
Thiswill start the listener on the specified port. Connections from clients can now

be made to this port_number. Cache automatically accepts multiple connections
on this port and spawns separate processes off for each connection.

Basic Operations 9

Using DSM

Within DSM environments, there are two types of listeners that can be started. In
one case, the listener is started on a single port and waits for a single connection.
Only one connection can be made on that port, and once the client disconnects
from the port, the listener process exits. The other listener is called aredirector
because it starts on a single port, listening for incoming connections, but then
redirects clients with alistener on another port. That new listener then
communicates directly with the client until the client closes the connection.

DO STARTAVESOTCSV(port _nunber)

The command above, when executed in aDSM EsiObjects server environment
will cause the listener to listen for a single connection on the specified
port_number. No other connections are allowed on this port once aclient is
connected. Once the client disconnects, this process exits back to the M prompt.

DO START"VESOTCPR(port_number, begi n, end)

The command above starts a redirector on the specified port_number. Incoming
client connections on this port will be redirected to listeners beginning with port
begin up to port end.

Automatic Connection

When the AutoConnect property of the ESITCPBridge is TRUE, then the bridge
will automatically attempt to connect when the control isloaded. The connection
is made using the Address and Port properties. An EsiObjects TCP Listener must
be running on the TCP/IP address and port specified.

When to Use

Automatic Connection is useful for those applications where the EsiObjects
Server Address and Port will not change.

Explicit Connection

Generally, users of the bridge will connect to the server explicitly. Often an
application may lookup local information about what server and port to connect to
from its configuration information and then explicitly connect to that server.
Some applications may query the user for thisinformation. Explicit connections
can be made to a server viathe Connect or ConnectT o method on the bridge.
Both methods return TRUE or FALSE to indicate whether or not the connection
was successful.

When to Use

Explicitly connect to the server when connection information is not constant for
the application.

Basic Operations 10

Connect

The Connect() method uses the current state of the Address and Port properties
for making the connection to a server. These properties can be set into the control
at design time using the control’ s property sheet, or during runtimeisin the
following example.

Example

Private Sub Form Load()

ESI TCPBri dgel. Addr ess="appsrv4. esi t echnol ogy. conf
ESI TCPBri dgel. Port =9000

I f ESITCPBridgel. Connect = False then Exit Sub

End Sub
ConnectTo

The ConnectTo() method takes two input parameters: a string Address and an
integer Port which specify the address and port to connect to. These inputs do not
change the Address and Port properties of the bridge control.

Example
| f ESITCPBridgel. Connect To(”127.0.0.1”, 9000) = False then Exit Sub

Verifying the Connection

There are two ways to verify that a connection has properly been made to the
server.

1. Connected Property — checking this property will return TRUE if a connection exists.

2. Connect Event —the Broker generates a Connect event that indicates a connection has
been made.

What to Do if the Connection Fails?

If your connection fails there are several things you should check.

1. Ensurethat Address and Port you are specifying, either in ConnectTo() method or in
the control’ s properties, are correct.

2. Ensurethat the Server Listener isrunning at the requested port.

3. Ensurethat the TCP/IP address is reachable from your location. (Try a“ping” for
starters.)

4. Ensurethat the Server Listener has enough connections available.

5. Check with you system administrator for firewalls that may be preventing
connections.

Basic Operations 11

Disconnecting from the Server

Disconnecting from the server can happen in one of two ways. explicitly by the
programmer or automatically when the control is unloaded.

Explicitly Disconnecting

It is possible to explicitly terminate a connection to a server by using the
Disconnect() method.
Example
ESI TCPBri dgel. Di sconnect ()

Automatic Disconnection

When aform containing a TCP Bridge is unloaded, the bridge will disconnect
prior to being unloaded. Under some error conditions the TCP Bridge was
automatically disconnect from the server.

The effects of Disconnection

e TheBroker will not longer dispatch messages or events.
» Proxieswill not longer function.
» A Disconnect event will be thrown if the TCP Bridge was connected before.

The Broker Object

Once a connection is made to the server, all subsequent communications with
EsiObjectsis done viathe Broker object. A handle to this object is obtained by
invoking the Broker method on the bridge. This operation returns the handle to
the object, which is then used to invoke object services in EsiObjects.

It is convenient to make this object handle a globa onein your VB application so
it can be accessed from any module. To do this, smply add the following line to
the General Section of the VB code:

Di m Broker As ESI TCPBr oker

Example

After successful connection to the server, the Broker is obtained in the following
example.

Br oker = ESI TCPBri dgel. Br oker
Using LookupObject

Using the Broker object, one of the first tasks may be locating objects on the
server. The LookupObject() is one mechanism for locating persistent and system

Basic Operations 12

objects on the server. This method takes one input parameter that is the name of
the object (see below for types of named objects). It returns either an empty
string if no such object was found, or a Variant/Object containing the handle to
the server object associated with the specified name.

Locating System Variables

The table below lists the system objects that the L ookupObject service may find.
The names in the table are not case sensitive.

System Object Abbreviation | Description

$ENVIRONMENT | $ENV The Environment object associated with this
connections

SLIBRARY $LIB The default Library

$LIBRARYLIST The List of all Class Libraries

$SY SPOOL The System Name Pool

Example
‘*Find $ENV

Dim EnvObj as Obj ect

Set EnvObj =Br oker . LookupQbj ect (“$Env")

Locating Class Objects

The LookupObject service may be used to find the Class object associated with a
class name. When looking up the class the name used should be the full class
name prefixed with an underscore. The standard format for nested class names

can be used.

Note: When getting an object from an operation such as L ookupObject() you can
Dim the variable as an Object or Variant. If you do not Dim the variable, the data
typeis set to Variant/Object.

Examples

‘Find the d ass Base$Set

Dim SetCl's as bj ect

Set Set Cl s=Br oker. LookupObhj ect (“_Base$Set”)
SetCls data type is Object

‘Find the Nested C ass ESI $M/Cl ass>Nest ed1>Nest ed?2

Set Nest Cl s=Br oker. LookupOhj ect (“_ESI $MyCl ass>Nest ed1>Nest ed2”)
NestCls data type is Variant/ Qbject

Basic Operations 13

Locating an O% Name

L ookupObject may aso be used to find named objects in the current default
domain. When coding in EsiObjects such names are prefixed with an “0%”.
When using the L ookupObj ect service the 0% should not be used — instead use

just the name.

If anameis not found then an empty string will be returned. It is thus possible to
check to seeif name is defined by checking against the empty string.

Examples
‘Check if an OYat abase is defined
| f Broker.LookupObj ect (“Database”) = “" Then ...
‘Code to deal with the undefined Dat abase
El se

‘The Database is defined - let’'s get it
Set DB = Broker.LookupObj ect (“Dat abase”)

Endl f
Trapping Server Errors

What are Server Errors?

If an error occurs while processing a service on the server the bridge will receive

an event with the error information. By defining code to handle this event you
may be informed of server problems.

Adding an Event Handler to Trap Server Errors

1. Fromthe View menu, select the Code option.

2. Select the TCP bridge object from the Object dropdown list.

3. Selectthe OnError procedure from the Procedure dropdown list.
4. Write your event handler.

M Pregecti - Fommd [Code]

[CSITCPOrdge =| fonteror =
Tal
Private Sub ESITCPPridg=l CmError (EyWal lpszBzsssge A3 Scring, DyVal lpEcTicles A3 Scrieg)
E=ghax lpesle=pmge, vwaOEDmly, lpeeTitls=
End Zub
o
= E T — Oy

The code editor window for the OnError procedure

Creating and Destroying Objects 14

Creating and Destroying Objects (Lifespan
Services)

Lifespan services are those services used to create and destroy objects on the
server. They allow the client to directly create and destroy objects. This section
of the guide deals with creation and destruction of objects using the bridge. The
Broker object is used to create and destroy objects. There are two methods
supplied with the Broker for creating objects: SimpleCreateObject() and
CreateObject(). The method DestroyObject() is used for object destruction.

In EsiObjects, the format of the Create command is as follows:
Creat e var=Cl assNane(par ani, par an®, ..): (keywor d=val ue, ..): (property=val ue, ..)
Recall that the params are those parameters that are passed into the CREATE

method in the Factory interface.

SimpleCreateObject allows for specifying positional parameters, only the SHARE keyword, and
no property assignments. CreateObject allows you to make full use of the EsiObjects
construction syntax — both positional and named parameters, most creation keywords, and
property assignments.

SimpleCreateObject

Syntax: SimpleCreateObject(classname, flags, paraml, param2,...)

This method handles simple cases of object construction. The method returns an
Object. Only classname and flags are required. Use this method if you wish to
create objects without using named parameters. It does allow for creating shared
objects. In summary, SimpleCreateObject:

1. Isused to create objects with out specia construction requirements.

Supports creation of shared objects.

Does not support specifying FIXED or BASE locations for the object.

Supports positional parameter passing only.

Does not support specifying properties for the construction of the object.

URWN

Use CreateObject() if other creation features are needed, such as named
parameters or property assignments.

The method requires two input parameters:

1. Theclass name (string) for the object you want to create. Y ou should use the fully
gualified class name, which consists of the class library name along with the class
name, e.g. “Base$Array”.

2. A flag (long) indicating whether the object isto be a child (0) or a shared object (1).

All input parameters after this are for positiona parametersfor the
Factory::CREATE method of the class. A comma should separate each

Creating and Destroying Objects 15

parameter. For more information on SimpleCreateObject() please refer to the
reference section below.

Examples

The following example shows the creation of two objects. Note that the return
value from the SimpleCreateObject is a data type of Object. Thus you should
“Dim” the handles as Objects.
Dim Query As Obj ect
‘Create a tenporary object of the hypothetical class SuperBase$Query
“This class requires three creati on paraneters
The dat abase to use for the Query
The User Nane
The Encrypted Password
Set Query =Broker. Si npl eCreat eObj ect (“Super base$Query”, 0, _
" Mai nDat abase”, _
"Jones, Fred C', _
" LKEO28833HGX2")
‘“When we are done with the object we should destroy it.
‘Create a Shared object and tell a security tracker object about it.
Di m Person As Obj ect
Set Person=Broker. Si nmpl eCr eat eCbj ect (“ Cor p$Per son”, 1, "Jones, Fred C’)
SecurityTracker. Regi st er Person Person

CreateObject

Syntax: CreateObject(classname, flags, Positiona Parms, NamedParams, Options,
Properties)

This method allows objects to be created using a broad range of functionality. It

supports almost every aspect of the EsiObjects Create command. The method

returns an Object. In addition to the functionality provided by

SimpleCreateObject() this method supports:

1. Most creation keywords (see the reference section below for more information on the
keywords that are supported.)

2. Named parameter passing.

3. Creation-time property assignment.

Like SimpleCreateObject(), only the first two parameters are required: the class
name and the flags. The other parameters are optional, they be omitted or an
empty collection passed in their place. These other parameters make use of the
data types supplied in the EOSupport library provided in the bridge. Objects of
these datatypes are for transfer of collections of datato and from a server —also
know as Bulk Transfer Objects. We describe these objectsin detail below. For
now, the example code shows their use in creating an object and passing in
positional and named parameters, creation keywords, etc.

Positional parameters are passed as an EsiList.

Creating and Destroying Objects 16

Named parameters are passed as an EsINvList. The Value of each element in the
list isthe value of the parameter, while the Name of the element is used as the
parameter name.

Creation Options are passed as an EsINvList. The name of each element isthe
creation keyword (case sensitive), while the value of the element is the value
assigned to that creation keyword.

Creation properties are passed as an EsINvList. The name of each element isthe
name of the property, while the value of the element is the value to be assigned to
that property.

For more information on CreateObject() please refer to the reference section
below.

Examples

Dim Order Server As Obj ect

Di m Par aneters As New Esi Li st

Dim Options As New Esi NvLi st

Di m NanmedPar ans As New Esi NvLi st

Di m Properties As New Esi NvLi st

‘W are going to create an object of the hypothetical class
“Local $Or der Server”

‘W want to create this class in the default domain

‘“and give it a name of OrderServer.

‘To do this will need to define two Create options

Options. Set At “Donain”, "” ‘Use the default domain
Options. Set At “Nane”, "O derServer” ‘ The Nanme="Order Server”
‘In order to Create an Obj ect Server we specific an few paraneters
‘The first two paranms may be passed positionally, so we set them
‘“in the Paraneters bject

Par amet ers. Di nensi on=2 * Set the size of the parameter object — 2
paraneters

Par aneters. Set El enent 0, "Jones, Mark” ‘The User Nane — param]l
Paraneters. SetElenment 1, "All” ‘Scope code for what orders to service —
param 2

‘The creation also requires an authentication token, (passed as
NanedPar anet er)

NamedPar ans. Set Pair —1, " AToken”, Token ‘Pass Token we have al ready
defi ned.

‘W also want to define a few properties of the object when it is
created

Properties. Set At “MaxCients”, 10

Properties. Set At “Enabl eEvents”, 1

‘Ck we are now ready to Create the bject

Set Order Server = Broker. CreateObject(“Local $O der Server”, 0,

Par anet er s, NanedPar ans,

Opti ons, Properti es)

‘Exanpl e of the same creation without properties

Creating and Destroying Objects 17

Set Order Server = Broker. Createject(“Local $OrderServer”, 0, _
Par anet er s, NanedPar ans, Opt i ons)

‘ Exanmpl e wit hout named paraneters or properties

Set Order Server = Broker. CreateQbject(“Local $OderServer”, 0, _
Par anmet ers, , Opti ons)

DestroyObject

Syntax: DestroyObject(objectld)

This method destroys the server object corresponding to the objectld. Itis
equivalent to the Destroy command in EsiObjects. Keep in mind that in
EsiObjects, when using Destroy the object may not always die. The object may
have their reference count decremented instead, or they may reject the attempt
altogether. The method returns a Boolean to indicate whether the object was
successfully destroyed (or had its reference count decremented), or whether the
attempt was rejected.

Examples

Destroy the Order Server object created in the previous exanple.
Br oker . DestroyQbj ect Order Server
Exanpl e of capturing the return value of the DestroyCbject
Di mtest As Bool ean
test = Broker.DestroyObject (O derServer)

Using the Bridge with Proxies 18

Using the Bridge with Proxies

This section describes the concepts and uses of Proxiesin Visual Basic and the
TCP Bridge. In the examples above, we created objects on the server and Proxy
Objectswithin VB. For example, the OrderServer object created above is a Proxy
object that maps to the actual object within the EsiObjects server. This assumes
that the UseProxies property on the Bridge is set to TRUE. Invoking operations
on the proxy object will cause the corresponding operation to be performed on the
actual server object in EsiObjects. The bridge handles this mapping and routing
transparently.

Concepts

Proxies map to Server Objects. Each proxy supports all the methods, properties,
and relationships that belong to its corresponding server object. They do this by
forwarding all service requests to the server object. The proxies do not act locally.
Also, keep in mind that proxies are generic — all validation occurs on the server.
Thusif you invoke an operation on a proxy that is not implemented in the server
object, an error will occur on the server indicating that the specified service could
not be found.

The UseProxies property must be set to TRUE on the bridge in order for the
bridge to generate proxy objects.

Default Value
The default value of a Proxy isthe EsiObjects OID for the object to which itisa
proxy.

Example

Set Env=Br oker. LookupChj ect (“$ENV")
EnvO D = Env
“EnvA D shoul d now be the O D of the Environnent Object

Invoking Object Services

In most cases invoking a method, property or relationship service on a proxy
object issimilar to invoking a service on any VB object:
obj ect . servi cenane

This syntax is used for invoking a service in the server object’s Primary interface
and passing no parameters. Below we describe how to invoke services in other
interfaces and how to pass parameters.

Using the Bridge with Proxies 19

Primary Interface

The services from the primary interface of an object are available directly on an
object proxy by ssmply using their name.

Format of the Name
ServiceName
Example

In the example above, we invoked L ookupObject to get a handle to the
ESI$Environment object in EsiObjects. Env now is a Proxy object mapped to
that server object. The environment object has a property in the Primary interface
called FullName that returns the name of the environment object. This example

invokes that property to get its value.
Name=EnvQbj . Ful | Nane

Unless the service returns an object, the return values from invoking servicesin
the proxy are string data types. If the return value is an object id, the return value

isaVariant/Object.

Other Interfaces

To explicitly access a service on an interface other then the Primary interface, the
name of the interface must also be included. Preceding the service name with the
interface name, separated by an underscore, forms the name.

Format of the Name
Interface_ServiceName

Example

This example shows how to execute the Upgrade method in the Factory interface
of the environment object. No return value is captured.

Env. Fact ory_Upgr ade
Using Parameters

Many services expect input parameters. EsiObjects allows for both positional and
named parameter passing into a method. The bridge also allows for both.

Positional Parameters

Positional parameters are mapped to the input specification parameters in the
order they are passed.

Using the Bridge with Proxies 20

Example

The Assert method in ESI$Environment displays a message box on the client.
Several inputs can be specified for this method including the text of the message
and the title. The following example shows an invocation of the Assert message
passing in these two parameters positionally. The first parameter is the message
text, the second is the title.

Env. Assert “Hello Wrld ", “Esi Objects Bridge”

EsiObjects B x|

& Hello Wharld

EsiObjects Assert Message
Named Parameters

The proxy also supports sending named parameters using the syntax
Name:=value.

Example

Env. Assert Text:="Hello Wrld Again”, Title:="Esi Objects Bridge”, _

I con:="Stop”, Buttons:=""
x|

Q Hello Warld Again

Proxy Assert M essage
Empty Parameters

When passing parameters in a positional manner it is possible to use an empty
parameter. This specifies that this positional parameter is empty. The server will
receive anull sting for the parameter value.

Example

In this example, parameters three and four are passed as nulls into the server
method, parameter five is for the icon to be displayed on the message box.

Using the Bridge with Proxies 21

Env. Assert “Hello World ", “Esi Objects Bridge”, , , “Question”

EsiObjects Bridge x|

@ Hello world
Cancel |

Assert Message using Parameters

Mixed Parameter Usage

It is possible to use mix the two types of parameter passing. Note: All positional
parameters must occur first! Of course, empty positional parameters may be
used aswell.

Example

Instead of passing nulls for parameters three and four as in the example above,
this example uses a mixture to pass positiona parameters one and two, then
specifies the Icon named parameter.

Env. Assert “Hello World ", “Esi Objects Bridge”, |con:="Question”

Bulk Data Transfer Mechanisms

Bulk Data Transfer Mechanisms

The TCP Bridge contains a number of datatypes that allow for the transfer of

22

collections or large amounts of datain bulk to and from the server. Aswe have

seen in the sections above, the bridge itself uses several of these objects. For

example, in the CreateObject() service. To pass acollection of parameters on

the object creation, an EsiList isused. Named parameters are passed in an
EsINVList.

This section deals with what these objects are and how to use them.

Concepts
Below isatable of the bulk transfer objects (BTO) supplied in the EOSupport
library.
Bulk Transfer Types
Name EsiObjects Description Data Collection? | Server
) Creatable?
Equivaent by Vaue?

EsiList ESI$List A list of items Yes Yes Yes
EsINVList ESI$NVList A list of itemswith Names | Yes Yes Yes
EsTable ESI$Table A multicolumn table Yes Yes Yes
EsiText ESI$Text A Large Text object Yes No Yes
Es Stream ESI$TCPStream An 10O Stream No No No

The List, NVList, and Table objects are collections into which elements can be

inserted, removed and iterated.

Text and Stream are objects to deal with large amounts of string data. All of these
objects, except the Stream, can be created on the server and passed to the client.
In other words, an ESI$List object created in EsiObjects can be returned to the

client and used within the client as an EsiList object. Conversely, if the client

creates an EsiList object and passes it into the server in amethod parameter, the

resultant object in the server is an ESI$List object.

Transfer Dynamics

When a BTO object uses “data by value” parameter passing (Streams do not use
data by value), when that object is passed as an argument to a service, or used as a
return value, the entire contents of that collection istransferred to the other side.
In the case of a BTO object used as an argument of a call from the client to the

Bulk Data Transfer Mechanisms 23

server, the contents of the object will be transferred to the server in total, and at
the conclusion of the call the new contents will be transferred back to the client.

Common Conventions

Index Basis

All structures have elements from zero (0) to their Dimension minus one(1). Thus
if you set the Dimension property of an EsiList to 10, the indexes go from zero to
nine.

Effects of Dimension

An attempt to set an element outside of the dimensioned bounds of a collection
will result in an error. This means that all collections should be dimensioned prior
to being filed. The only exception is when an append operation is being
performed, which will cause the collection to grow.

Appending Items

Setting an item at position negative one (-1) will cause the item to be placed at the
end of the collection and the dimension of the collection to be increased.

Common Error Handing

All BTO objects that support “Data by Value’ support a set of common error
handling facilities. These facilities alow error information to be associated with
the collection directly. These facilities might be used by methods that validate the
contents on collections.

See the section Common Error Methods below for details on these facilities.
Creating BTO objects in Visual Basic

If you need aBTO object in Visual Basic, there are two mechanisms for creating
one: using the CreateObject() service, or using the Dim command.

Using CreateObject

Di m Tabl e as Esi Tabl e
Set Table = Createbject(“Esi.Table")

Using the Dim Command

Di m Tabl e as new Esi Tabl e

Between Bridges

Unlike proxies which represent objects in the server that exist only in the context
of the single bridge connection (unlessit is a shared object), BTO objects can be

Bulk Data Transfer Mechanisms 24

used between different bridges. So if your project contains more than one bridge,
both can use aBTO object. Thisis because the entire contents of the object are
transmitted to the client and server and thus can be shared by different bridges.

Common Error Methods

Below are detailed the common error methods supported by all BTO object that
support “Data by Vaue'. They provide a set of common facilities for associating
error information with a BTO object.

Methods

GetErrorld
Returns the error id number.
Signature
Function: GetErrorld() AsLong
Returns: The error id number.
GetErroritem
Returns the item associated with the error.
Signature
Function: GetErroritem() As String
Returns: The item associated with the error.
GetErrorText
Gets the text of the error.
Signature
Function: GetErrorText() As String
Returns: Thetext of the error.
SetErrorld
Used for setting an error id number that can be used to identify an error.
Signature

Function: SetErrorld(ld As Long)

Parameters; |d — the error id number.

Bulk Data Transfer Mechanisms 25

SetErroritem

Used to set an item into the error data that was associated with the error. For
example, if aparticular item in the collection were invalid, the error item would
be set to that item.

Signature
Sub SetErrorltem(Item As String)
Parameters: Item — the item associated with the error.
SetErrorText
Sets the text of the error message.
Signature

Sub SetErrorText(Text As String)
Parameters. Text —the text of the error message.

Bulk Transfer Object (BTO) Reference
EsiList
Description
AnEsiListisasimple singleton list of items.
Methods

ClearAll

Clears the contents of the List.
Signature
Sub ClearAll()
GetElement
Gets an element in the List.
Signature
Function: GetElement(ltem As Long) As Variant
Returns: The Value of the requested element

Parameters; Item - The zero based index of the item to retrieve.

Bulk Data Transfer Mechanisms 26

SetElement

Sets an element into the List. If anitem isalready stored at the specific index,
that item will be overwritten with the new value.

Signature

Function: SetElement(ltem As Long, Value As Variant) As Long

Returns: The position the element was set at.
Parameters:

Item - A zero based index of theitem inthelist. A value of negative one (-1)
indicates that the element should be append to the end of thelist.

Value - The value of the e ement.
Properties
Dimension

Used to set and retrieve the number of cellsin thelist. The cells may or may not
have any elements stored in them.

Signature

Dimension As Long

Returns; The number of callsin thelist.
EsiObjects Equivalent

ESI$List

Within EsiObjects, aBTO object can be created from the ESI$List class. Objects
created within EsiObjects of this type can be returned to the client and used like a
client EsiList.

Example

‘Define the List
Di mt heLi st as New Esi Li st
‘Set the size of the List via the Dinension property
t heLi st. D mensi on=12
‘Load the List with sone data
For Item= 0 To theList.D nension-1
value = “Item “+ Str(ltem
t heLi st. Set El enent Item val ue
Next
‘“Append a fewitens into the List via the SetEl enment using -1 index
t heLi st. SetEl enent -1, "Extra Item 1”

Bulk Data Transfer Mechanisms 27

thelLi st. SetElenent -1, "Extra Item 2"
‘“Fill a ListBox with itens fromthe List
For Item= 0 To theList.D nension-1
value = theList.GetEl ement(ltem
Li st box1. Addl t em val ue
Next

EsiNVList

Description

The ESINVList provides alist of named items. Each item in the list may be given
aname —also caled a“key”. Names need not be unigue. An index based on name
is maintained which allows itemsto be retrieved by name. An NV List object can
also be used like a Map that maps names to values.

Methods
ClearAll

Emptiesthe ESINVList of al contents.
Signature
Sub ClearAll()
DoesKeyEXxist
Determinesis a specific name existsin the NVList
Signature
Function: DoesK eyExist(Name As String) As Long
Returns: Non zero if the Name is defined in the NV List
Parameters: Name - the name to look for.

GetCell

Returns a NamedCell object (described below) that is a copy of the element stored
at the specified index within the collection.

Signature
Function: GetCell(Item As Long) As NamedCell

Returns: A NamedCell object with a copy of the information located at this
element.

Parameters. Item - the zero based index of the element being requested.

Bulk Data Transfer Mechanisms 28

GetName

Gets the Name (the key) of an element stored at the specified index.

Signature

Function: GetName(ltem As Long) As String
Returns: The Name field of the element stored at the specified index.
Parameters: Item - the zero based index of the element.

GetValue

Gets the Value field of an element stored at the specified index.
Signature

Function: GetVaue(ltem AsLong) As Variant

Returns: The Valuefield of the element stored at the specific index.

Parameters: Item — the zero based index of the element.

Lookup

Similar to GetValue() except that it finds the Va ue associated with a specified
Name instead of an index. The method throws an error isthe nameis not found.

Signature
Function: Lookup(Name As String) As Variant

Returns: The Value associated with the specified Name.
Parameters. Name — the name of the element to lookup.

RemoveKey

Deletes the element associated with the specified Name. The size of the NVList is
unchanged — the cell occupied by the removed element is blank. If there existsin

the collection more than one element with the same Name, only the most recently

inserted element with that Name will be cleared.

Signature
Sub RemoveK ey(Name As String)
Parameters. Name — the Name (key) of the element to remove.

SetAt

Sets the Value field associated with the specified Name. If the Name is not
present in the NV List, anew element will be created. If there exists more than

Bulk Data Transfer Mechanisms 29

one element in the collection of the Name, only the most recently inserted element
of that Name will be modified.

Signature

Sub SetAt(Name As String, Value As Variant)

Parameters:

Name — the Name of the element into which we are setting anew Vaue.

Value —the new Value of the element associated with the specified Name.
SetCell

Sets an element using a NamedCell object (described below) at the specified
index. Any previous contents of the cell at that index will be overwritten.

Signature

Sub SetCell(Item As Long, Cell As Object)

Parameters:

Item — the zero-based index number of the e ement to set. A value of —1 will cause a new
element to be added to the end of the NV List.

Cell —aNamedCell object with the Name/Value pair for this element. The
information will be copied from this object into the cell at the specified index.

SetName

Sets the Name field of an element at the specified index. Any previous name
stored at that index will be overwritten.

Signature

Sub SetName(Item As Long, Name As String)
Parameters:

Item — the zero-based index number of the e ement to set. A value of —1 will
cause anew element to be added to the end of the NV List. In this case, the Name
field will be set and the Value field will be blank.

Name — the new Name for the element.

SetPair

Similar to SetCdll(), this method sets the Name/V alue pair of an element at a
specified index, except the Name and Va ue are passed as input parameters
instead of within a NamedCell object. Any previous contents of the cell at that
index are overwritten.

Bulk Data Transfer Mechanisms 30

Signature

Sub SetPair(Item As Long, Name As String, Value As Variant)

Parameters:

[tem — the zero-based index number of the element to set. A value of =1 will
cause a new e ement to be added to the end of the NVList.

Name — the new Name for the element.
Vaue —the new Vaue for the e ement.

SetValue

Setsthe Value of an element at the specified index. Any previous value stored at
that location would be overwritten.

Signature
Sub SetVaue(ltem As Long, Vaue As Variant)
Parameters.

[tem — the zero-base index number of the element to set. A value of —1 will cause
anew e ement to be added to the end of the NV List.

Value —the new Vaue for the e ement.
Properties
Dimension

Used to set and retrieve the number of cellsin thelist. The cells may or may not
have any elements stored in them.

Signature
Dimension As Long
Returns; The number of cellsin thelist.

EsiObjects Equivalent

ESI$SNVList

Within EsiObjects, aBTO object can be created from the ESI$NVList class.
Objects created within EsiObjects of this type can be returned to the client and
used like aclient ESINVList.

Bulk Data Transfer Mechanisms 31

The NamedCell Object

This object mimicsacell inan NVList. It hastwo fields: Name and Value.
Methods on the NV List can make use of a NamedCell object to set and retrieve an
element from an NV List.

Properties
Name

The Name field of the cell.

Signature

Name As String

Value

The Valuefield of the call.

Sighature
Vaue AsVariant

Examples:
‘ Exanpl e of Using an Esi NVLi st

Di m NvLi st As new Esi NVLi st

“Allocate space for five (5) itens

NvLi st. Di nensi on=5

‘Set data into the NVList by position in various ways
NvList.SetPair 0, "First”, 1

NvLi st. SetPair 1, "Second”, 2

NvLi st. Set Value 2, 3 ‘ sets the Value field of the 3% elenent to “3”
NvLi st. Set Nane 2, "Third” ‘ sets the Name field of the 3'® el ement
‘ Set the 4'" el ement using a NanedCel | object

Dim ACel | As new NanmedCel |

ACel | . Val ue=4

ACel | . Nane="Fort h”

‘ set the cell into the fourth cell

NvLi st.SetCell 3, ACell

“ reuse the sane cell to set the 5'" el enent

ACel | . Name="Fi fth”

ACel | . Val yue=5

NvList.SetCell 4, Acell

“ Append an el ement onto the NVLi st

NvLi st.SetPair -1, "Sixth”, 6

‘Set using a key that does not exist yet

NvLi st. Set At “Seventh”, 7

Bulk Data Transfer Mechanisms

‘Lookup sone Val ues in various ways

Tenp = NvList. GetVal ue(3) ‘Tenp Should = 4

Tenmp = NvLi st. Lookup(*“Second”) ‘' Tenp Should = 2
Set ACell = NvList.GetCell (2)

Tenmp = ACel |l . Name ' Termp should = “Third”

Issues with Names (keys) in an NVList

Multiple elements with the same Name (key) value can provide unpredictable

32

results. Generally, the most recent definition of the key will be the one used for
operations such as Lookup, SetAt, etc. Because of this behavior, ESNVList is
intended to be used as a map for unique names to values and should be used for

that purpose.

EsiTable

Description

An EsiTableisacollection of data organized by rows & columns. It isoptimized

for row based operations more than column based lookups, etc.

To be useful the Table must aways be dimensioned, although it islegal to specify

zero for one of the two dimensions. Rows and columns are zero-based.

Methods

AddRow

Addsarow to the table. Therow is passed as an EsiList object. Each element in

thelist is placed in a column along that row.
Signature
Function: AddRow(List AsEsiList) AsLong
Returns: The zero-base index of the row that was added

Parameters. List —an EsiList object with the contents of the new row. If the

EsiList has more e ements then there are defined columns, the additional elements
will beignored. If the list is shorter then the number of columns, missing columns

will be empty.

Example

Dim Tabl e As New ESI Tabl e
‘Dimension the Table as 0 Rows of 4 Col unms
Tabl e. Set Di nension 0, 4
add elenents to a list which will becone colums in a row
Dim Li st As New Esi Li st
Li st. Di mnensi on=4
For | = 0to 3

Bulk Data Transfer Mechanisms 33

Data="Data “+Str(I)

Li st.SetEl enent |, Data
Next
NewRow=Tabl e. AddRow(Li st)
AddRowV
Similar to AddRow() this method adds a row to the table, but the column values
are passed in viaexplicit input parameters.
Signature
Function: AddRowV (ParamArray VariableArgs() As Variant) AsLong
Returns: The zero-based index of the row that was added.
Parameters: ParamArray — a variable number of arguments, all of which are
Variants.
Example

Special note: Asof thiswriting, a bug existsin the implementation of the
AddRowV() service. Theworkaround isto dimension the variable for the Table
as an Object and then use the New command (as shown below.)

‘Dim Table As New Esi Table * AddRowV will not work

Dim Tabl e As Obj ect ‘ Workaround to get it to work
Set Table = New Esi Tabl e

‘Di nension the Table as 0 Rows of 4 Col ums

Tabl e. Set Di mrension 0, 4

NewRow=Tabl e. AddRowV(“ Dat al”, " Dat a2”, " Dat a3”, " Dat a4")

NewRow=Tabl e. AddRowV(“ Dat a5”, " Dat a6”, " Dat a7”, " Dat a8")

ClearAll

Clears the contents of the table.
Signature
Sub ClearAll()
Columns
Returns the number of Columnsin the Table

Signature

Function Columns() As Long

Returns: The number of columnsin the Table.

Bulk Data Transfer Mechanisms 34

GetCell

Returns the value stored in a cell in the table at a specified row and column.
Signature

Function GetCell(Row As Long Column As Long) As Variant

Returns: The value stored in the cell.

Parameters:

Row — the zero based index of the row.

Column — the zero based index of the column.

GetColumn

Returns an EsiList of the content of acolumn in the table from al rows. This
function is much slower than GetRow() since the table is optimized for row
access.

Signature
Function GetColumn(Column As Long) AsEsiList

Returns: An EsiList object with the contents of the requested column from all
rows.

Parameters: Column — the zero-based index of the column to retrieve.

GetDimension

Returns the dimensions of the table. The return value isastring in the format:
“Rows,Columns’.

Signature

Function GetDimension() As String

Returns: A string representation of the dimensions of the table. Formatted as
“Rows,Columns”.

GetRow

Returns an EsiList of the content of the specified row in the table.
Signature

Function GetRow(Row AsLong) AsESIList

Returns: An EsiList with the contents of the row. Each column value occupying
onecell inthelist.

Bulk Data Transfer Mechanisms 35

Parameters: Row — the zero-based index of the row to retrieve.

Rows

Returns the number of Rowssin the Table

Signature

Function Rows() As Long
Returns; The number of rowsin the Table.

SetCell

Sets the value of acell in the table at the specified row and column.

Signature

Sub SetCell(Row As Long, Column As Long, Value As Variant)
Parameters:

Row — the zero-based index of the row.

Column — the zero-based index of the column.

Vaue —the value to the set the cell.

SetColumn

Sets an entire column of data to the contents of an EsiList. Each element in the list
isset into arow of the table at the specified column. This operation is much
slower than inserting data via a SetRow(), since the table is optimized for Row
operations.

Signature
Function SetColumn(Column As Long, List AsESIList) AsLong
Returns: The zero-based index of the column that was set.
Parameters:

Column — the zero-based index of the column to set. A value of negative one (-1)
will append a new column.

List —an EsiList with the contents of the new columns. Any entriesin the list
beyond the number of rowsin thetable areignored. If the elementsin the List are
shorter than the rows in the table, then the remaining items are filed as empty
variants. Thusal column values are overwritten.

Bulk Data Transfer Mechanisms 36

SetColumnV

Similar to SetColumn() this method sets an entire column of datain the table
except that the column values are passed in explicitly viainput parameters.

Signature

Function SetColumnV (Column As Long, ParamArray VariableArgs() As Variant)
AsLong

Returns: The zero-based index of the column that was set.
Parameters:

Column — the zero-based index of the column to set. A value of negative one (-1)
will append a new column.

ParamArray — avariable number of arguments, all of which are Variants. Each
valueisplaced in arow at the specified column.

SetDimension

Sets the dimensions of the table. Either the rows or columns may be dimensioned
to zero (0).

Signature
Sub SetDimension(Rows As Long, Columns As Long)
Parameters:
Rows — the number rows the table should have.
Columns — the number of columns the table should have.

SetRow

Sets the contents of a specified row to the values found in an EsiList. Any values
aready stored at that row are overwritten.

Signature

Function SetRow(Row As Long, List ASESIList) AsLong
Returns: The zero-based index of the row that was set.
Parameters:

Row — the zero-based index of the row to set. A value of negative one (-1) will
append a new row to the table.

List —an EsiList containing the data to be set in the row. If the number of entries
in the List islonger than the number of columns, the additional itemswill be

Bulk Data Transfer Mechanisms 37

ignored. If the List is shorter, then the additional columns in that row will remain
unchanged.

SetRowV

Similar to SetRow() this method sets the contents of a specified row in the table,
except the column values are passed in explicitly viainput parameters.

Signature

Function SetRowV (Row As Long, ParamArray VariableArgs() As Variant) As
Long

Returns; The zero-base index of the row that was set.
Parameters:

Row — the zero-based index of the row to set. A value of negative one (-1) will
append anew row.

ParamArray — a variable number of arguments, all of which are Variants.

Example

Dim Tabl e As New Esi Tabl e

‘Di nension the Table as 10 Rows of 4 Col ums

Tabl e. Set Di nrension 10, 4

‘Update the Data in Row 10

Tabl e. Set Row 10, “Datal”, "Data2”, "Data3”, ”Data4”

EsiObjects Equivalent
ESI$Table

Within EsiObjects, aBTO object can be created from the ESI$Table class.
ODbjects created within EsiObjects of this type can be returned to the client and
used like aclient EsiTable.

Example

Dim Tabl e As New Esi Tabl e

"Di mension the Table as 0 Rows of 4 Col umms

Tabl e. Set Di nension 0, 4

NewRow = Tabl e. AddRow/(" Dat al", "Data2", "Data3", "Data4")
NewRow = Tabl e. AddRow/(" Dat a5", "Data6", "Data7", "Data8")
'"Create a List to use for adding rows to a Table

Dim Li st As New Esi Li st

List. Dinension = 4

Li st.SetEl ement 0, "Listlteml"
List.SetEl enment 1, "ListltenR"
Li st. Set El enent 2, "ListltenB"
List.SetEl enent 3, "Listltemd"

Bulk Data Transfer Mechanisms 38

"Add Ten rows to the table, update the third columm to the Val ue of the
" Loop | ndex
For | =1 To 10
NewRow = Tabl e. AddRow(Li st)
Tabl e. Set Cel | NewRow 3, |
Next
Si ze = Tabl e. Get Di mrensi on() ' Should be "12, 4"

Unsupported Features

Table headers are not yet supported by the COM version of the Table. However,
on the server ESI$Table does implement column headers and they are transported
over thewire.

EsiText

Description

The EsiText object supports very long block text. Given the restrictions of most
M systems, large blocks of text must be store in a collection of blocks. The
EsiText object isthe client side representation of the ESI$Text object.

The operations on EsiText facilitate the breaking of the large text object into
smaller chunks that can be stored in M.

Access is provided to the text in four ways:
1. Asasingletext string.

2. Byline (Asdelimited by CR/LF)

3. By sub-string.

4. By text block, given a specific size of block.

The TCP transport will automatically create this type of object on the server side
when it receives text that istoo large for the M system to handle.

Methods

Append

Appends additional text to the end of an EsiText object.
Signature

Sub Append(Text As String)

Parameters:

Text — the text to append.

Bulk Data Transfer Mechanisms 39

BlockCount

Determines the number of blocks of a specified size that are in this text object.
Note the final block may actually be smaller than the block size.

Signature

Function BlockCount(Size As Long) AsLong

Returns: The number of blocks (of the requested size) that are needed to hold the
text.

Parameters:
Size —the size of ablock.
Clear
Clears the contents of the text object.
Signature
Sub Clear()
GetBlock
Gets a block of text for a specified block and block size.
Signature
Function GetBlock(Block As Long, BlockSize As Long) As String
Returns: Thetext for the requested block.
Parameters:
Block — the block to retrieve.
BlockSize — the size of the block.
GetDimension
Returns the number of characters of text in atext object.
Signature
Function GetDimension() As Long
Returns: The number of characters of the text.

GetlLine

Gets aspecific lineif text. Lines are delimited by CR/LF.

Bulk Data Transfer Mechanisms 40

Signature

Function GetLine(Line As Long) As Sting
Returns: The line of text.

Parameters:

Line — the zero-based line number to retrieve.

GetSubString

Gets a sub-string within the text, starting from a specified position for a specified
length.

Signature
Function GetSubString(Start As Long, Size As Long) As String
Returns: The text starting from the Start position.
Parameters:
Start — the starting character position — zero-based.
Size — the number of charactersto retrieve.
GetText
Returns the text as one string.
Signature
Function GetText() As String
Returns: The entire body of text asastring.
LineCount
Gets the number of lines of text. Lines are delimited by CR/LF.
Signature
Function LineCount() As Long
Returns: The number of lines of text.
SetDimension
Sets the size of the Text object. Thisis useful for pre-allocation of memory.

Signature

Sub SetDimension(Size As Long)

Bulk Data Transfer Mechanisms 41

Parameters:
Size — the number of characters expected in the text.

SetText

Sets the entire text of the object to a specified string.

Signature

Sub SetText(Text As String)

Parameters:
Text —the new text to use.
EsiObjects Equivalent
ESI$Text

Within EsiObjects, aBTO object can be created from the ESI$Text class. Objects
created within EsiObjects of this type can be returned to the client and used like a
client EsiText.

Example

‘Create a large text object to send to the Server
DimtheText As New ESI Text
‘Define the CRILF for End of Line
EOL=Chr (13) +Chr (10)
“Add a 100 Lines to the Text
For A =1 To 100

‘Build the new line, note that ECL is appended.

Ln = “This is line “+Str(A) +EQL

t heText . Append Ln
Next
‘Determnmine how nany |lines there are (Should be 100)
Li neCount =t heText . Li neCount
‘We decide to use a block size to 300 characters
Bl ockSi ze=300
‘Determine many 300 character blocks there are
Bl ocks=t heText . Bl ockCount (300)
‘Loop all of the Bl ocks
For A =0 To Bl ocks-1

Bl ock=t heText . Get Bl ock(A, Bl ockSi ze)

‘Do Something with the bl ock
Next

Bulk Data Transfer Mechanisms 42

EsiStream

Description

The EsiStream object is used when a Client 1/0 Stream needs to be passed to the
server for processing. The current implementation only supports files on the client
system and supports Read or Write mode, but not Read/\Write.

Information written to the stream by the server is transmitted back to the client
and then into the client stream. Likewise a stream Read operation on the server
causes the client to read information from the stream and transmit it to the server.
The EsiStream is an automation implementation of the Microsoft | Stream
interface.

Methods

Clone

Not yet supported.

Close

Saves any changes and closes the stream. No other operations on the stream are
allowed onceit is closed.

Signature
Sub Close&()

Commit

Saves changes to the stream. The only legal additional operation on a stream that
has been committed is Closg().

Signature
Function Commit (CommitFlags As Long) AsLong
Returns: Success Code.
Parameters:

CommitFlags — see the documentation for 1Stream for the meaning of these flags.

Name Value Supported

Default 0 Yes

Overwrite 1 No

Bulk Data Transfer Mechanisms 43

OnlylfCurrent 2 No

DangerouslyCommitMerelyToDiskCache 4 No

Consolidate 8 No

CopyTo

Not yet supported.
GetSize

Not yet supported.
LockRegion

Not yet supported.
OpenFile

Opens the stream on arequested file. Thisfunction isvalid on the Client side
only.

Signature
Function OpenFile(FileName as String, Flags As Long) As Boolean
Returns; TRUE if the file was opened successfully.
Parameters:
FileName — the full path of thefile.
Flags—aboolean “Or” of the Flagsto use.

modeRead 0 Open in Read Mode

modeWrite 1 Open in Write Mode

modeReadWrite 2 Open in Read/Write Mode
shareCompat 0 Compeatible with Sharing
shareExclusive 16 Open with exclusive Access
shareDenyWrite 32 Open Denying Write Access to others
shareDenyRead 48 Open Denying Read Access to others

Bulk Data Transfer Mechanisms

shareDenyNone 64 Open Denying Nothing to Others
modeNolnherit 128 Do not inherit

modeCreate 4096 Create Fileif it does not already exist
modeNoT runcate 8192 Prevent Truncation

typeText 16384 Text Mode

typeBinary 32768 Binary Mode

Common Flag combinations

Open for Read 0

Open for Write 1+ 4096 = 4097
Read

Read data from the stream.
Signature

Function Read(Length As Long) As String

Returns: A string of the data read.

Parameters:

Length —the number of charactersto read.
ReadLine

Read aline (CR/LF delimited) from the stream.
Signature

Function ReadLine() As String

Returns: The text of the next line, as delimited by CR/LF.

Revert

Not yet supported
Seek

Seek to a position in the Stream, based on a specific origin.

Bulk Data Transfer Mechanisms 45

Signature

Function Seek(LowOffset As Long,. HighOffset As Long, Origin AsLong) As
Long

Returns: Success Code.

Parameters:

LowOffset —the low Word of the offset to seek to.
HighOffset — the high Word of the Offset to seek to.
Origin — code that specifiesthe origin of the seek.

Start Of File 0

Current Position 1

End Of File 2
SetSize

Sets the size of the stream.
Signature
Function SetSize(LowOffset As Long, HighOffSet As Long) AsLong
Returns: Success code.
Parameters:
LowOffset — low word of the Size.
HighOffSet — high Word of the Size.
UnlockRegion
Not yet supported
Write
Writes data to the stream.
Signature
Function Write(Data As String) As Long
Returns: Success Code.

Parameters:

Bulk Data Transfer Mechanisms 46

Data — the string data to write out to the stream.
WriteLn

Write aline of string data, terminated by CR/LF.
Signature

Function WriteLn(Line As String) As Long

Returns: Success Code.

Parameters:

Line—the line of string data to write out to the stream.

Properties

AccessTime

Givesthe last time the stream was accessed. Depending on the state of the stream,
this data may not be available.

Signature
AccessTime As String
CreateTime
The time the Stream was created. May not be available
Signature
CreateTime As String
HighSize
The high word isthe size of the stream.
Signature
HighSize AsLong
LockType
Not Y et Supported.
Signature

LockType AsLong

Bulk Data Transfer Mechanisms 47

LowSize

The low word is the size of the stream.

Signature
LowSize AsLong
ModifyTime
The time the stream was last modified. May not be available.
Signature
ModifyTime As String
Name

The name of the file associated with the stream. May not be available.

Signature

Name As String

StreamMode

The mode of the stream.

Signature
StreeamMode As Long
Possible Values
Group Storage Mode Identifier Hex Vaue Decimal
Access STGM_READ 0x00000000L 0
STGM_WRITE 0x00000001L 1
STGM_READWRITE 0x00000002L 2
Sharing STGM_SHARE_DENY_NONE 0x00000040L 64
STGM_SHARE_DENY_READ 0x00000030L 48
STGM_SHARE_DENY_WRITE 0x00000020L 32
STGM_SHARE_EXCLUSIVE 0x00000010L 16
STGM_PRIORITY 0x00040000L 262144

Bulk Data Transfer Mechanisms 48

Creation STGM_CREATE 0x00001000L 4096
STGM_CONVERT 0x00020000L 131072
STGM_FAILIFTHERE 0x00000000L 0

Transactioning STGM_DIRECT (0x00000000L 0
STGM_TRANSACTED 0x00010000L 65536

Transactioning STGM_NOSCRATCH 0x00100000L 1048576

Performance
STGM_NOSNAPSHOT 0x00200000L 2097192

Direct SWMR STGM_SIMPLE 0x08000000L 134217728

and Simple
STGM_DIRECT_SWMR 0x00400000L 4194384

Delete On STGM_DELETEONRELEASE 0x04000000L 67108864

Release

Success

A success code for the last operation that occurred on the stream.

Signature
Success AsLong
Type

The type of stream. The current implementation of stream should return avalue
of 2, indicating a stream type.

Signature

Type As Long

Unicode

Treat the stream as Unicode text.

Signature

Unicode As Boolean

Bulk Data Transfer Mechanisms 49

EsiObjects Equivalent
ESI$STCPStream

Thisisthe only BTO object that cannot be created within EsiObjects and passed
back to the client. Only aclient can create this object and passit into the server.
Within EsiObjects, an ESI$TCPStream object is created to represent the client
side object.

Example

DmWiteStream As New Esi Stream

Di m ReadStream As New Esi Stream

‘Open File Test. Txt for Wite

If WiteStream OpenFile("Test. Txt", 1 + 4096) Then
‘File Test.Txt is Open for Wite
WiteStream WiteLine "Line 1"
WiteStream WiteLi ne "Line 2"
WiteStream C ose

End |f

‘Open File Test.Txt for Read

I f ReadStream OpenFil e("Test. Txt", 0) Then
‘File Test.Txt is Open for Read
ALi ne = ReadStream ReadLi ne
ALi ne = ReadStream ReadLi ne
ReadSt ream C ose

End |f

Issues

Remember the following regarding streams:

e Streams must be opened on the client.

e Streams may be either Read or Write, but not Read/Write

* Not al methods are supported by all stream types at thistime.

Event Processing 50

Event Processing

Overview

One of the most powerful featuresin EsiObjects is event processing. Objects can
watch other objects for events or changesin state. The TCP Bridge brings that
same functionality to the client. Using the event processing capability of the
bridge, a client can watch an object on the server for a specific event/state-change,
or any event/state-change. When the event occurs, a specified method is invoked
on the client (known as a“callback”.) Thus clients can register for and respond to
events that occur on the server.

One of the most common uses for event processing is for keeping a client display
of data current with what is on the server. Especially when more than one process
is changing data on the server. The client can register for events that occur when
datais changed. When the event is thrown, the callback method isinvoked and
that method could update the client display with the most recent data.

In EsiObjects we say that an object will “watch” another object for a specific
event or category of events. The watched object will “throw” the event when it
encountersit by placing the event on an event queue.

Below we describe how a client makes use of event processing using the bridge.
Process description

There are severa steps that must be done for event processing to be implemented
on the client.

The programmer must define an EventSink. Thisisaclass (.cls) file that contains
the callback method for the event. It also manages awatch id that is a number
assigned to each watch.

In the client code the programmer must:

1. Create an EventSink. Thisis an instance of the event sink class defined in the step
above.

2. Createa“watchid” for the event sink which is a unique number assigned to the event
and the sink.

3. Watch the object. This actually “registers’ the fact that the client is going to watch a
specified object for some type(s) of events. During the time that this watch is active,
if the event occursin the object, a specified callback method in the event sink is
invoked.

4. When the client no longer wants to watch the object, it should ignore the object. This
deactivates the Watch.

Each of these stepsis detailed below.

Event Processing 51

Define an EventSink

Defining an EventSink involves creating a Class (.cls) file that contains the
method(s) that will be invoked when an event occurs (the callbacks.) Below isan
example of an event sink called MyEventSink that is defined in the
MyEventSink.clsfile. Only one callback routine has been defined. Note that the
method is defined as Public. Also note that a public member is defined called
Watchld. Thisisuseful for storing the watch id with the sink.

A Generic Event Sink Example

File: MyEventSink.cls

‘Hol der for the Watch Id

Public Watchld As Long

‘ Generic Responder

Public Sub OnEvent (ParamArray Args() As Variant)
“Args(0) = The Object that threw the event
“Args(1l) = The Event Nane
'"Ck let's handle the Arg here
' MsgBox ("Event on Cbject " + Args(0))
Forml. List1l. Addltem ("Event " + Args(1l))

End Sub

Create an EventSink

To create an instance of the EventSink object, you use the new command. For
example, if we want to create an event sink for the one defined in the example
above:

Dim Si nk As New MyEvent Si nk

Create a Watchld based on an EventSink

Create awatch id that is associated with the EventSink. This watch id will be used
to watch and ignore objects.

Watch an Object

Watching an object for an event is done by invoking the Watch() method on the
Broker. This method call will specify the watch id and the EventSink that should
handle the event when it occurs. In addition Watch() also specifies what method
should be invoked on the EventSink when the event occurs.

Handle Events

The callback method in the EventSink implementation should handle the event as
needed when it occurs.

Event Processing 52

Ignore Object

To stop watching an object for events the I gnor &) method of the Broker is used.
Y ou can specify what event(s) to ignore or all events.

Free the Watchld

When there is no longer areason to use the EventSink, the watch id associated
with it should be released.

The Event Queue

Each client connection to the server is alocated an event queue. Whenever an
event occurs the event is place on the event queue for the client to pick up. There
are two ways in which the event queue has its events pulled and sent to the client:

At the conclusion of acall to the server, the event queue for the connection is
checked and all of the events are dispatched back to the client at that time.

The DispatchEvents() method of the Broker may aso be used to explicitly
dispatch any events that might have been caused by the actions of others. This
method essentially polls the server for any events on the queue and if any are
found, they are dispatched to the client. Typically a Timer could be set up to
execute this method at regular intervals to check for any events that have
occurred.

The EventSink

The EventSink is an object (defined in aclassfile) that is called when an event
occurs that the client iswatching for. This object will beinvoked at the specified
method when the event occurs. The method that is run in response to the event
(the callback) is specified on the Watch() method.

Event Signature Information (callback format)

The general signature for an event callback is
CallbackName(ParamArray Args() As Variant)

When an event is thrown, the specified callback in invoked and a variable number
of arguments may be passed in from the server depending on the event. When
watching for an event, you will always get at least two parameters.

1. Thefirst parameter isthe Object that generated the event.

2. Thesecond parameter is the event name. The format of the nameis
“Interface;:Name”.

Any other parameters that are passed are from the server implementation and
depend on the event being thrown. To find out what parameters you can expect

Event Processing 53

from an event, check the documentation or implementation code for the event on
the server.

Watching

Watching an object involves defining and creating an Event Sink, getting awatch
id for the event, and then invoking the Watch() method. This method identifies
the object you want to watch, the event(s) you are watching for, and the callback
to be run when the event occurs.

GetWatchld

The GetWatchld() method on the Broker creates an identifier for a specific event
sink. Thiswatch id is used when creating and destroying watches to identify
which object should receive the event. The Broker createsthisid, and it isagood
idea to store the watch id with the sink. (See the example code below.) The
method takes one parameter. This parameter is the event sink object we are
requesting awatch id for.

Example

Wat chl d=Br oker . Get Wat chl d(Si nk)
store the watch id in the event sink
MyEvent Si nk. WAt chl d=Wat chl d

Watch

The Broker implements a method called Watch() that allows awatch to be
established on a specific object. The Watch() operation takes five arguments (see
the reference section on the Broker below for more details).

1. Theobject to be watched

The event name or type of event to watch for

Watch Id

The event sink object

The callback method name in the event sink to be invoked when the event occurs.

S A

Example

‘Setup a general Event Watch
Broker. Watch theQbject, "$Events", Sink.Watchld, Sink, "OnAnyEvent"

What can be watched

The second parameter to the Watch method specifies what is to be watched. A
Watch may be established on an object for a specific event or category of event.
Below isalist of the things that may be watched for by a client or another object.

Specific events — watch for a programmer-generated event.

Event Processing 54

Specific properties — watch for state changes to a property of an object.

Specific relationships — watch for changes/assignments to a relationship of an
object.

Any Event — you can generically watch for al programmer-generated events.
Any Property —thiswill watch for state changes in any property or relationships.
Specifying what to Watch
Watching for a specific Event, Property, or Relationship

When a specific event, property or relationship is to be watched for, the format of
the second parameter is simply a string containing the event, property or
relationship name. If the item being watched for isin an interface other than
Primary the format is* Interface::Item”.

Watching for any Property and Relationship change

The second parameter should be “ $Properties’ if you are watching for all property
or relationship changes.

Watching for any Event

To watch for all programmer-generated events use “ $Events’ in the second
parameter of Watch().

Specifying who will handle the event

Arguments three, four and five in the Watch() method are used to determine
where the event will be sent should it occur.

The Watch Id

Used as a master grouping token.
The Event Sink

The EventSink object that contains the callback method that isinvoked to handle
the event.

The Method

The name of the callback method in the sink that is called should the event occur.

Event Processing 55

Ignoring
Ignore

The Ignore() method is used to stop watching for events. Using this method all or
some the watches made by under awatch id may be removed. See the reference
section below for more details about the | gnor &) operation.

Specifying what to Ignore

Depending on what arguments are passed to the I gnor &() method various watches
may be removed. A watch id is always required.

Ignoring a specific event, property, or relationship

The Ignore() method can be used to cancel a specific Watch that has been made
on an object. The event, property, or relationship being ignored must have been
explicitly watched viathe Watch() method. When invoking the method this way,
the object being ignored and the event name must be specified.

Ignoring all events

If al eventsfor an object are being watched it is possible to remove this using the
I gnor &() method.

In invoking the method this way, the object being ignored and “ $Events’, to
indicate all events, must be specified.

Ignoring all property or relationship watches

If all property changes for an object are being watched it is possible to remove
this watch by specifying the object and the string “ $Properties’ on the Ignor &).

Ignoring all watches for an object

To remove ALL watches on a specific object the I gnor &) isinvoked with the
object and an empty string (“”) for the event name.

Turn off all watches for all objects

Using an empty string for both the object and event name on the I gnor e() method
will close out all watches will all objects on the server. Y ou should usethisin
your application code before exiting your application to insure al client watches
are cleaned up prior to closing.

Effect on Queued Items

When an Ignor g() isissued, any eventsin the event queue corresponding to the
events being ignored are filtered out automatically. If aWatch() is done during

Event Processing 56

this processing, any remaining items on the queue for the new watch will be
dispatched normally..

FreeWatchld

When awatch id is no longer used this method will ensure that any resources
associated with it will be freed. Any watches associated with this watch id will be
removed.

Example of Event Setup

‘Create the Event Sink (bject

Dim Si nk As New MyEvent Si nk

‘Define the Watch id, and save it in the Sink

Si nk. Wat chl d = Broker. Get Wat chl d(Si nk)

‘Setup a general Event Watch

Broker. Watch theQbject, "$Events", Sink.Watchld, Sink, "OnAnyEvent"
‘Setup a specific Property watch for the Id Property

Br oker. Watch theQbject, “1d”, Sink.Wtchid, Sink, “OnldChange”

Example of Event Cleanup

‘Renpbve a general event watch

Broker. | gnore Sink.Wtchld, theChject, “$Events”
‘Renmove the watch of the property “Id”
Broker.lgnore Sink.Wtchld, theObject, “1d”
‘Free the Watchld

Br oker. FreeWat chl d Si nk. Watchl d

‘Free the Sink

Set Sink = Not hi ng

Understanding When Events are Dispatched

There are two ways in which events are dispatched from the server event queue to
the client:

At the conclusion of acall to the server (invoking a method, property, etc.), the
event queue for the connection is checked and all of the events are dispatched
back to the client at that time.

The DispatchEvents() method of the Broker may also be used to explicitly
dispatch any events that might have been caused by the actions of others. This
method essentially polls the server for any events on the queue and if any are
found, they are dispatched to the client. Typically a Timer could be set up to
execute this method at regular intervals to check for any events that have
occurred. (See “Poalling for events’ below.)

Event Processing 57

Polling for Events

When your application is sitting idle, you may want to check the server to see if
there are any events that have occurred. The Broker provides the method

DispatchEvents() that will dispatch any events that may be enqueued on the
server.

Using DispatchEvents

The usage of DispatchEvents() israther simple. It simply needs to be invoked. It
is suggested that this be done in either the applications idle time processing or by
using atimer.

Example of Timer Code to Dispatch Events:

Private Sub Tinmerl1l_Tiner()

‘Di spatch no nore then 5 Events

ESI TCPBri dgel. Br oker. Di spat chEvents 5
End Sub

Controlling Event Processing

There are several mechanisms for controlling event processing (all availablein
the Broker):

Event processing can be enabled/disabled using the ChangeEventDispatch()
method.

The number of events outstanding can be checked using the
Number Of EventsPresent() method.

Y ou can determine if event processing is enabled by using the
EventDispatchEnabled() method.

Advanced Usage 58

Advanced Usage

Gateway Debugging Functions

The Bridge provides the services listed below for the purposes of executing
EsiObjects commands or evaluating expressions within the context of an object
on the server. These advanced services are useful for debugging purposes. Since
code is being executed in the context of a server object, these should never be
used on production code. Future deployment versions of the TCPBridge may not
support these operations. Also, invoking these services may be subject to security
restrictions.

ObjXecute

This service provides the ability to invoke arbitrary behavior in the context of an
object. It uses EsiObjects syntax, similar to the Xecute command provided in
EsiObjects or similar to the kind of commands that would be entered in the
EsiObjects Xecute Shell. The value of $Return set during the executed code will
be returned to the client

ObjEval

Provides the ability to invoke arbitrary behavior in the context of an object. You
must supply avalid EsiObjects expression. The value of the expression will be
returned to the client. This serviceis equivalent to ObjectX ecute(* Set
$Ret="+Expr).

Xecute

Not yet implemented.
Using the Bridge with Proxies Disabled

Prior to Version 4.0 of EsiObjects, the ability to use proxies was not available.
The only way to invoke behavior of an object wasviaan API on the Broker. This
AP, described here, allowed for invoking methods and set/get properties. Only
positional parameter passing was alowed. This API has been retained for
backward compatibility. Note that proxies return their Object Id as their default
property, and thus can be used as the first argument to these calls.

Below we describe the API calls available. For details on the syntax of these
services, see the reference section below.

Advanced Usage 59

InvokeMethod

Rather than using a proxy object it is possible to invoke a method on an object
using the InvokeM ethod method of the broker. Only positional parameter passing
is supported. To invoke a method in an interface other than Primary, the format is
“Interface::Method”.

PropertyGet

Rather than using a proxy object it is possible to get a property of an object using
the PropertyGet method of the broker. Only positional parameter passing is
supported. To invoke a property in an interface other than Primary, the format is
“Interface::Property”.

PropertySet

Rather than using a proxy object it is possible to set a property of an object using
the PropertySet method of the broker. Only positional parameter passing is
supported. To invoke a property in an interface other than Primary, the format is
“Interface::Property”.

Example

‘Lookup the object Id of the Environnent

Env = Broker. LookupQObj ect (“$ENV")

‘Use to broker to get the Objects Nane

Name = Broker. | nvokeMet hod(Env, " Nane”, 1)

‘Cet the Full Nane Property O the Environnent
Ful I name =Broker. PropertyGCet (env, " Ful | Name”)
“Set the last error proprerty to Null

Br oker. PropertySet Env, LastError, “NoError”

Unsupported Behavior

Property Accessors not currently supported

The following property accessors are not supported in the bridge (either by using
proxies or the Broker API): $Data, $Get, $Order, $Query, SNormalize, $Valid,
Kill

Out & In/Out parameter passing

Currently there is no mechanism for calling EsiObjects methods that use an Out,
or aln/Out parameter pass mechanism. In the future the variant would need to be
passed with a“by reference” flag set.

Access from ASP Pages 60

Access from ASP Pages
Using TCPLink

Provided with the Bridge isa TCPLink COM component that is similar to the
TCPBridge but designed to work in avariety of clients. In specific the TCPLink
may be used to communicate with EsiObjects from an ASP page on a Web

Server.
i =i Object Browser
IESITCPBRII]GELih = [+ | Baf 2] ‘?|
| -l #fx
: — Search Results
.| Library | Class | mMember |
:|Classes Members of 'ESITCPLINK
i @ =glohals= |eH address
Bl ECObjectPromy =% Broker
Bl ESITCPBridge =@ Connect
21 ESITCPBroker |e& Connected
IRk ECITCPLink =% ConnectTa
1 =% Dizconnect
EH Port
EH UseProxies
Class ESITCPLInk
Member of ESITCPBRIDGEL ib
I
The TCPLink component as shown in the VB Object Browser
Process

Creating the Link Object

Within an active server page, the link object is created by invoking the
CreateObject service on the server.
Li nk=Server. Creat eCbj ect (“ESI . TCPLi nk™)

Access from ASP Pages 61

Connect to the Server

Connecting to a server viathe TCPLink is similar to the connection mechanisms
supported by TCP Bridge.

In other words, Connect or ConnectTo methods can be used. The properties
Address and Port should be set accordingly when using Connect().

Enable Proxies

Similar to the TCP Bridge if you wish to use Proxies, you should set the
UsesPr oxies property to TRUE.

Using the Broker

With Proxies
Using Proxies with the TCPLink is similar to using Proxies as described above with the
TCP Bridge.
To enable proxies, set the UseProxiesto True.

Li nk. UseProxies = 1
Server objects created and returned to the client, once this property is set, are proxy
objectsthat can be invoked like a proxy object on the TCP Bridge. The programmer
requests a Broker object from the link by invoking the Broker () service.

Broker = Link. Broker()
The Broker object here is the same as the Broker object used by the TCP Bridge. This
means you can use such services as L ookupObject(), CreateObject(), etc. The use of
proxy objects returned by the server isthe same as well.

Set EnvObj = Broker.LookupOhj ect (“$ENV")
EnvQbj . Assert “Hello Worl d”
Without Proxies

Setting UsePr oxies property to False will disable the use of Proxies. The invocation of
services on the server therefore, isviathe APl availablein the Broker. Namely
InvokeM ethod(), GetProperty(), and SetProperty().

Br oker . | nvokeMet hod EnvObj, “Assert”, 1 “Hello World”
Closing the Connection
At the end of the script the following actions should be done:
1. Clear the Broker and other objects (see below.)

2. Disconnect the link using the Disconnect() method.
3. Clear thelink.

Clearing objects

Object references may be cleared by setting the object to Nothing. For example:
Set Cbj ect = Not hi ng.

Access from ASP Pages 62

Disconnecting the Link
Use the Disconnect() method of the link object to disconnect from the server.
Example

Hereisthe basic outline of and ASP script.
<%@ Language=VBScri pt %

<%
Set ECConnecti on=Server. Creat eCbj ect ("ESI. TCPLi nk")
ECQConnect i on. Address = "appsrv4. esi t echnol ogy. cont
EOConnecti on. Port = 9000
ECConnecti on. UseProxies = 1
tenmp = EQOConnecti on. Connect ()
if temp <> True then
Response. Wite("<P>Connection Fail ed! </ P>")
end if
Set Broker = EQOConnecti on. Broker ()
Set Env = Broker.LookupQObj ect (" $ENV")
%
<HTM_>
<HEAD>
</ HEAD>
<BODY>
<I--

Body of Page goes here along with additional script calls
[]-->
<P> The Environnent Object is named
<%
Response. Wite Env. Nane

%
</ P>
</ BODY>
</ HTML>
<%

Set Env = Not hi ng

Set Broker = Not hi ng

ECConnect i on. Di sconnect

Set EOConnecti on = Not hi ng
%

Reference 63

Reference

The TCPBridge
Methods

AboutBox

Displays the About Box for the ESITCPBridge,
Signature
Sub AboutBox()
Broker
Returns the Broker object for this connection.
Signature
Function Broker As ESITCPBroker

Connect

Connects to an EsiObjects server using the Address and Port propertiesto
determine which server to connect to.

Signature

Function Connect() As Boolean

Returns: True if the connection was made.
ConnectTo

Connects to an EsiObjects server using the Address and Port input parametersto
determine which server to connect to.

Signature

Function ConnectTo(Address As String, Port As Integer) As Boolean
Returns: True if the connection was made.

Parameters:

Address — the | P address of the server to connect to.

Port — the port at which the EsiObjects server islistening for connections.

Reference 64

Disconnect
Disconnects from the server.
Signature
Function Disconnect() As Boolean

Returns: Trueif the bridge is disconnected from the server.

Properties

Address
The IP address of the EsiObjects server to connect to.
Signature
Address As String
Examples

10.0.0.100
127.0.0.1 (loopback address)

appsrv4.esitechnology.com
AutoConnect

If this property is set to TRUE, the bridge will attempt to connect to the server
when the control is loaded.

Signature
AutoConnect As Boolean
Connected

Boolean to indicate whether the bridge is connected to the server. TRUE means a
connection exists.

Signature
Connected As Boolean

Port

The Port on the EsiObjects server is running on.

Reference 65

Signature

Port As Integer

Examples:

9000
2200

ProxyDefaultValue

If set to TRUE proxy obejects will have a default value of the OID of the object
which they proxies.

Signature
ProxyDefaultVaue As Boolean
ReturnNullString

If set to TRUE anull string returned from the server will create an empty variant.
If set to FALSE then aNULL variant is created, which can be tested using the
ISNull function in VBScript or Visual Basic.

Signature
ReturnNullString As Boolean
UsesProxies

If set to TRUE, then proxy objects will be created.

Signature
UsesProxies As Boolean

Events

Connect

Generated when a connection is made to the server

Signature
Event Connect()
Disconnect

Generated when the connection to the server is terminated

Reference 66

Signature
Event Disconnect()

OnBrowse

Generated when the server generates a symbol dump to the client. Thiswill occur
if the server encounters the ZVIEW command.

Signature
Event OnBrowse(Object As String, Title As String, Table As Object)

OnDiagnostic

Generated when a diagnostic message is generated on the server. For example,
“Do $ENV.Trace(Msg)” would trigger this event.

Signature
Event OnDiagnostic(Text As String)
OnError

Generated when the server encounters an error. For example, Do
$ENV .ReportError(“ M essage text”)

Signature
Event OnError(Message As String, Title As String)
OnWarning

Generated when the server issues awarning message. For example, Do
SENV.OnWarning(“ M essage text”)

Signature
Event OnWarning(Text As String)
Output

Generated when the Environment outputs text. For example, Do
$ENV.Output(“ Message text”)

Signature

Event Output(Text As String)

Reference 67

The Broker
Methods

ChangeEventDispatch

Sets the state of Event Processing by the Bridge.

Signature

Sub ChangeEventDispatch(Enabled As Long)
Parameters:

Enabled — set to 1 for enable, O to disable event processing.
ClearFault

Resets the fault state. If used in OnError the fault will not be passed on to the
caler.

Signature
Sub ClearFault()
CreateObject

This method provides compl ete object creation service.

Signature

Function CreateObject(ClassName As String, Flags As Long, [ParameterList As
EsiList], [NamedParameterList As ESINvVList], [KeywordList As ESINVList],
[PropertyList As EsINvlist]) As Variant

Returns: The new object.

Parameters:

ClassName — the name of the class of the object to create.

Flags — creation flags.

1 — Shared

0 - Child

ParameterList —an EsiList of the positional parameters used for creation.

NamedParameterList —an EsiNvList of the named parameters to use in the
creation.

Reference 68

KeyWordList —an EsiNvList of the Creation Keywords to use for the creation.

Keyword Vaue

Base The base location to use to create the object
Child 1 = Create as a Child object

Class 1 = Object should be created in the Class scope
Domain A Domain to use to create the object

Fixed A fixed location to use to create the object
Name The name of the object in the Domain

Shared 1 = Create as a Shared Object

Keywords are case sensitive.

PropertyList —an EsINvList of the property to assign during object creation.
DestroyObject
Destroys an object on the server.
Signature
Function DestroyObject(Object As String) As Boolean
Returns: True if successful.
Parameters:
Object — the object to destroy.

DispatchEvents

Polls the Server to see if there are any pending events and dispatches any that are
found.

Signature
Sub DispatchEvents(Max As Long)
Parameters:

Max — the maximum number of eventsto dispatch. A value of zero (0) will
dispatch all pending events.

Reference 69

EventDispatchEnabled

Determinesif event dispatching is enabled.
Signature
Function EventDispatchEnabled() As Long
Returns; Zero(0) if Events are disabled.
FreeWatchld

Freesawatch id. All watches with thisid will be removed.
Signature

Sub FreeWatchld(Watchld As Long)

Parameters:

Watchld —the watch id to free.
GetWatchld

Getsawatch id for a specific EventSink.

Signature

Function GetWatchld(EventSink As Object) AsLong

Returns; The watch id.

Parameters:

EventSink —the Event Sink in which awatch id should be all ocated.
Ignore

Removes watches from the server.

Signature

Sub Ignore(Watchld as Long, Object As String, Item As String)
Parameters:

Watchld — the watch id.

Object — the object to ignore. (A null string will ignore all objects.)

Item — the Event or Property to ignore. The format of the item should be
“Interface::ltem”. The value “ $Properties’ or “$Events’ may be used to ignore a

Reference 70

corresponding watch. A Null string will ignore al events & properties for this
object.

InvokeMethod

Invoke a method on an object.

Signature

Function InvokeM ethod(Object As String, Method As String, ParamArray
VariableArguments() As Variant)

Returns: The return value of the method.
Parameters.
Object - the object receiving the method request.

Method — the name of the method to invoke. To invoke a method in an interface
other than the Primary interface, the name must be in the format of
“Interface::Method” .

ParamArray — Variable length array of variants to be passed to the method as
positional parameters.

LookupObject

The LookupObject is a mechanism for locating persistent and system objects on
the server.

Signature
Function LookupObject(Name As String) As Variant
Returns: The value associated with the name or an Empty string.
Parameters:
Name — the name of the object to lookup. (See below.)
Notes on Names

Locating System Variables

The table below lists the system objects that the L ookupObject() service may
find. The names are not case sensitive.

System Object Abbreviation Description

$ENVIRONMENT $ENV The Environment object

Reference 71

associ at_ed with this
connections
SLIBRARY $LIB The default Library
$LIBRAYRLIST The List of all Class Libraries
$SY SPOOL The System Name Pool

Locating Class Objects

The L ookupObject() service may be used to find the Class object associated with
aclass name. When looking up the class, the name used should be the full class
name prefixed with an underscore. For example to find the class object the
TimeStamp in the Base Class Library the name would be“_Base$TimeStamp”.

The standard format for nested class names should also work, e.g.
“ Lib$Class>Nest1>Nest2”.

Locating an O% Name

L ookupObject() may also be used to find named objects in the current default
domain. When coding in EsiObjects such names are prefixed with an “O%".
When using the L ookupObj ect() service the O% should not be used, just the
name. If anameis not found then an empty string will be returned. It isthus
possible to check to see if nameis defined by checking against the empty string.

NumberOfEventsPresent
Determines the number of events on the queue that need to be processed.
Signature
Function NumberOfEventPresent As Long
Returns: The number of event present in the Event Queue on the server.

ObjEval

Evaluates an expression in the context of an object on the server.
Signature

Function ObjEval (Object As String, Expr As String)

Returns: The value of the Expression.

Parameters:

Object — the object

Expr — the expression to evauate.

Reference 72

ObjXecute

Executes code in the context of an object on the server.

Signature

Function Obj X ecute(Object As String, Action As String)
Returns: The Vaue of $Return.

Parameter:

Object — the object.

Action — the code to execute in the context of the of the object

PropertyGet

Get the value of a property.

Signature

Function PropertyGet(Object As String, Property As String, ParamArray
VariableArguments() As Variant)

Returns: The value of a property.
Parameters:
Object — the object.

Property — the property to invoke. To invoke a property in an interface other than
the Primary interface, the name must be in the format of “Interface::Property”.

ParamArray — variable length array of variants to be passed to the property Value
accessor as positional parameters.

PropertySet
Set the value of a property.
Signature

Function PropertySet(Object As String, Property As String, Value, ParamArray
VariableArguments() As Variant)

Returns: Trueif the property was set.
Parameters:

Object — the object.

Reference 73

Property — the property to invoke. To invoke a property in an interface other than
the Primary interface, the name must be in the format of “Interface::Property”.

Value — the new value of the property.

ParamArray — variable length array of variants to be passed to the property Assign
accessor as positional parameters.

SimpleCreateObject

Simplified procedure to create an object on the server.

Signature

Function SimpleCreateObject(ClassName As String, Flags As Long, ParamArray
VariableArguments() As Variant) As Variant

Returns: The new object.

Parameters:

ClassName — class name of the object to create.
Flags — creation flags.

1 — Shared

0 - Child

ParamArray —avariable list of parameters to use on as positional parametersin
the Factory::CREATE method.

Watch

Establishes a watch on an object.

Signature

Sub Watch(Object As String, Item As String, Watchld As Long, Sink As Object,
Method As String)

Parameters:
Object — the object to watch.

Item — the event or property to watch. The format of the name should be
“Interface::Item”. The value “ $Properties’ may be used to watch all properties.
The value “$Events’ may be used to watch all events.

Watchld — the watch id.

Sink — the EventSink to invoke when the event occurs.

Reference 74

M ethod — the method to invoke on the sink when the event occurs.
Xecute

Executes code on the server. (Not yet implemented)

Signature

Function Xecute(Action As String)
Returns: The Value of $Return
Parameters:

Action — the EsiObjects code to execute.

The TCPLink

Overview

The TCPLink is aautomation component that functions similar to the TCP Bridge
without the extra facilities expected of an ActiveX control. The TCPLink is
useful for clients that do not have a user interfaces, for example an ASP page.

Methods

Broker

Returns the Broker object for this connection.
Signature
Function Broker As ESITCPBroker

Connect

Connect to an EsiObjects server using the Address and Port propertiesto
determine which server to connect to.

Signature

Function Connect() As Boolean

Returns: TRUE if the connection was successfully made.
ConnectTo
Signature

Function ConnectTo(Address As String, Port As Integer) As Boolean

Reference 75

Returns: TRUE if the connection was successfully made.
Parameters:
Address —the IP address of the server to connect to.

Port — the port at which the server islistening for connections.
Disconnect
Disconnects from the server.
Signature
Function Disconnect() As Boolean

Returns; Trueif thelink is disconnected from the server.

Properties

Address
The IP address of the EsiObjects server to connect to.
Signature
Address As String
Examples

10.0.0.100
127.0.0.1

appsrv4.esitechnology.com
Connected
If TRUE, the link is connected to the server.
Signature
Connected As Boolean
Port
The port on which the EsiObjects server is running.
Signature

Port As Short

Reference 76

Examples:
9000
2200
ProxyDefaultValue

If set to TRUE proxy obejects will have a default value of the OID of the object
which they proxies.

Signature
ProxyDefaultValue As Boolean
ReturnNullString

If set to TRUE anull string returned from the server will create an empty variant.
If set to FALSE then aNULL variant is created, which can be tested using the
ISNull function in VBScript or Visua Basic.

Signature
ReturnNull String As Boolean
UsesProxies

If set to TRUE, then proxy objects will be created.

Signature

UsesProxies As Boolean

	Introduction
	Document Convention
	TCP Bridge Overview
	What is the TCPBridge?
	Scope of Document

	Concepts
	Communications Diagram
	The Bridge, the Broker, and Proxies
	The Bridge
	The Broker
	Proxies

	Data Types
	What is EOSupport

	Basic Operations
	Getting Started in VB
	Adding the TCPBridge to the Components Tab
	Updating the References Dialog to Include EOSupport
	Adding a Bridge to Your Project

	Connecting to the Server
	The EsiObjects TCP Listener
	Using Cache
	Using DSM

	Automatic Connection
	When to Use

	Explicit Connection
	When to Use
	Connect
	Example

	ConnectTo
	Example

	Verifying the Connection
	What to Do if the Connection Fails?

	Disconnecting from the Server
	Explicitly Disconnecting
	Example

	Automatic Disconnection
	The effects of Disconnection

	The Broker Object
	Example

	Using LookupObject
	Locating System Variables
	Example

	Locating Class Objects
	Examples

	Locating an O% Name
	Examples

	Trapping Server Errors
	What are Server Errors?
	Adding an Event Handler to Trap Server Errors

	Creating and Destroying Objects (Lifespan Services)
	SimpleCreateObject
	Examples

	CreateObject
	Examples

	DestroyObject
	Examples

	Using the Bridge with Proxies
	Concepts
	Default Value
	Example

	Invoking Object Services
	Primary Interface
	Format of the Name
	Example

	Other Interfaces
	Format of the Name
	Example

	Using Parameters
	Positional Parameters
	Example

	Named Parameters
	Example

	Empty Parameters
	Example

	Mixed Parameter Usage
	Example

	Bulk Data Transfer Mechanisms
	Concepts
	Bulk Transfer Types
	Index Basis
	Effects of Dimension
	Appending Items
	Using CreateObject
	Using the Dim Command

	Common Error Methods
	
	GetErrorId
	Signature

	GetErrorItem
	Signature

	GetErrorText
	Signature

	SetErrorId
	Signature

	SetErrorItem
	Signature

	SetErrorText
	Signature

	Bulk Transfer Object (BTO) Reference
	
	Description
	Methods
	ClearAll
	Signature

	GetElement
	Signature

	SetElement
	Signature

	Properties
	Dimension
	Signature

	EsiObjects Equivalent
	ESI$List

	Example
	Description
	Methods
	ClearAll
	Signature

	DoesKeyExist
	Signature

	GetCell
	Signature

	GetName
	Signature

	GetValue
	Signature

	Lookup
	Signature

	RemoveKey
	Signature

	SetAt
	Signature

	SetCell
	Signature

	SetName
	Signature

	SetPair
	Signature

	SetValue
	Signature

	Properties
	Dimension
	Signature

	EsiObjects Equivalent
	ESI$NVList

	The NamedCell Object
	Properties
	Name
	Value

	Examples:
	Issues with Names (keys) in an NVList
	Description
	Methods
	AddRow
	Signature
	Example

	AddRowV
	Signature
	Example

	ClearAll
	Signature

	Columns
	Signature

	GetCell
	Signature

	GetColumn
	Signature

	GetDimension
	Signature

	GetRow
	Signature

	Rows
	Signature

	SetCell
	Signature

	SetColumn
	Signature

	SetColumnV
	Signature

	SetDimension
	Signature

	SetRow
	Signature

	SetRowV
	Signature
	Example

	EsiObjects Equivalent
	ESI$Table

	Example
	Unsupported Features
	Description
	Methods
	Append
	Signature

	BlockCount
	Signature

	Clear
	Signature

	GetBlock
	Signature

	GetDimension
	Signature

	GetLine
	Signature

	GetSubString
	Signature

	GetText
	Signature

	LineCount
	Signature

	SetDimension
	Signature

	SetText
	Signature
	Parameters:

	EsiObjects Equivalent
	ESI$Text

	Example
	Description
	Methods
	Clone
	Close
	Signature

	Commit
	Signature

	CopyTo
	GetSize
	LockRegion
	OpenFile
	Signature

	Read
	Signature

	ReadLine
	Signature

	Revert
	Seek
	Signature

	SetSize
	Signature

	UnlockRegion
	Write
	Signature

	WriteLn
	Signature

	Properties
	AccessTime
	Signature

	CreateTime
	Signature

	HighSize
	Signature

	LockType
	Signature

	LowSize
	Signature

	ModifyTime
	Signature

	Name
	Signature

	StreamMode
	Signature
	Possible Values

	Success
	Type
	Unicode

	EsiObjects Equivalent
	ESI$TCPStream

	Example
	Issues

	Event Processing
	Overview
	
	Define an EventSink
	A Generic Event Sink Example
	Create an EventSink
	Create a WatchId based on an EventSink
	Watch an Object
	Handle Events
	Ignore Object
	Free the WatchId

	The EventSink
	
	CallbackName(ParamArray Args() As Variant)

	Watching
	
	Example
	Example
	What can be watched
	Specifying what to Watch
	Watching for a specific Event, Property, or Relationship
	Watching for any Property and Relationship change
	Watching for any Event

	Specifying who will handle the event
	The Watch Id
	The Event Sink
	The Method

	Ignoring
	
	Specifying what to Ignore
	Ignoring a specific event, property, or relationship
	Ignoring all events
	Ignoring all property or relationship watches
	Ignoring all watches for an object
	Turn off all watches for all objects

	Effect on Queued Items

	Example of Event Setup
	Example of Event Cleanup
	Understanding When Events are Dispatched
	Polling for Events
	
	Example of Timer Code to Dispatch Events:

	Controlling Event Processing

	Advanced Usage
	Gateway Debugging Functions
	Using the Bridge with Proxies Disabled
	Unsupported Behavior

	Access from ASP Pages
	Using TCPLink
	Process
	Connect to the Server
	Enable Proxies
	Using the Broker
	With Proxies
	Without Proxies

	Closing the Connection
	Clearing objects
	Disconnecting the Link

	Example

	Reference
	The TCPBridge
	Methods
	AboutBox
	Signature

	Broker
	Signature

	Connect
	Signature

	ConnectTo
	Signature

	Disconnect
	Signature

	Properties
	Address
	Signature
	Examples

	AutoConnect
	Signature

	Connected
	Signature

	Port
	Signature
	Examples:

	ProxyDefaultValue
	Signature

	ReturnNullString
	Signature

	UsesProxies
	Signature

	Events
	Connect
	Signature

	Disconnect
	Signature

	OnBrowse
	Signature

	OnDiagnostic
	Signature

	OnError
	Signature

	OnWarning
	Signature

	Output
	Signature

	The Broker
	Methods
	ChangeEventDispatch
	Signature

	ClearFault
	Signature

	CreateObject
	Signature

	DestroyObject
	Signature

	DispatchEvents
	Signature

	EventDispatchEnabled
	Signature

	FreeWatchId
	Signature

	GetWatchId
	Signature

	Ignore
	Signature

	InvokeMethod
	Signature

	LookupObject
	Signature
	Notes on Names
	Locating System Variables
	Locating Class Objects
	Locating an O% Name

	NumberOfEventsPresent
	Signature

	ObjEval
	Signature

	ObjXecute
	Signature

	PropertyGet
	Signature

	PropertySet
	Signature

	SimpleCreateObject
	Signature

	Watch
	Signature

	Xecute
	Signature

	The TCPLink
	Overview
	Methods
	Broker
	Signature

	Connect
	Signature

	ConnectTo
	Signature

	Disconnect
	Signature

	Properties
	Address
	Signature
	Examples

	Connected
	Signature

	Port
	Signature
	Examples:

	ProxyDefaultValue
	Signature

	ReturnNullString
	Signature

	UsesProxies
	Signature

