
Page 1

1ESI

Copyright © ESI Technology Corporation

Object Oriented
Concepts:

Using Inheritance
and

Specialization

This lesson will build upon the concepts we covered in previous lessons. In this
lesson we implement the Player and Dealer classes. Implementing these classes
forces us to look at specialization and how to use (and possibly misuse)
inheritance. We will also explore the extensibility of our design and show how
it will get us into trouble if we were to evolve it into a more flexible, extensible
design.

Page 2

2ESI

Copyright © ESI Technology Corporation

Lesson Goals

 Upon completion of this lesson, the student should be able to:

• Describe why the Hand object can be folded into the
Player object.

• Understand how inheritance is used to specialize the
dealer as a kind-of player.

• Understand how inheritance can be misused.
• Implement the Player and Dealer objects.

Read and understand the objectives of this lesson.

Page 3

3ESI

Copyright © ESI Technology Corporation

Reviewing the Design

RIP

Players

RIP

Cards

RIP

Dealer

RIP

Hand

RIP

Deck

PlayersCards DealerDeck Hand

I know:
suit and
rank

I can:
make suit
and rank
known

I can:
do nothing

I can:
Accept Card

I can:
Deal,
Shuffle,
Accept Card

I know:
how many
cards

I know:
my name,
value of hand

I know:
my name,
the deck

I can:
Deal
Shuffle
Reset

I know:
52 Cards
Top Card

You made plans to meet her again. You engage in some small talk while you
pull out your notes from the last lesson. “Did you get the Deck class coded?
Did you have any problems?” you ask. “Yes I got it coded and tested. It was
rather simple to do!” she said.

“Great,” you say, “Lets move on to the next topic, that is, refining our design
by taking a look at the Hand and Players classes.” Your student studies the
‘can do’ and ‘knows’ diagram carefully. “What do you see and how can we
refine the design?” you ask.

“Hmm, the first thing I notice is that the Hand class does not have any behavior
defined on it. That seems to say something.” “And what else?”, you ask. “It
only knows ‘how many cards’ which seems to overlap with what the Player’s
class know. If a player knows the ‘value of the hand’, why shouldn’t the player
also know ‘how many cards’ are in the hand? It would appear that we could
move the knowledge of ‘how many cards’ into the Player class and delete the
Hand class.”

Page 4

4ESI

Copyright © ESI Technology Corporation

Refining the Design

RIP

Players

RIP

Cards

RIP

Dealer

RIP

Deck

PlayersCards DealerDeck

I know:
suit and
rank

I can:
make suit
and rank
known

I can:
Accept Card

I can:
Deal,
Shuffle,
Accept Card

I know:
my name,
value of hand,
how many cards

I know:
my name,
the deck

I can:
Deal
Shuffle
Reset

I know:
52 Cards
Top Card

“Yes, this is possible. What are the consequences?” you ask as you move the
‘knows how many cards’ to the Player class and erase the Hand class from the
design document.
“Well, clearly it simplifies the design. On the other hand, it introduces some
inflexibility by combining two abstractions of the game,” she replied.
“Exactly!” you reply, “However, in the context of this system, combining
abstractions is not a bad thing since the system has a very limited purpose.
Under most circumstances where extensibility is a basic requirement of a
system, it is always important not to paint yourself into the proverbial corner.
When building a system, it is always important to make sure that in future
iterations a design can be extended without a total rewrite. It’s important to put
lots of time into analysis and design, making sure that you have generalized the
design. In that way, you can easily extend the system. This clearly lets you
perform shorter implementation iterations, getting new functionality out to
your customers more often. Object Orientation gives you the edge you need to
accomplish extensibility goals.”
“In other words, if I were building an information system for the casino, I
would want to do a thorough analysis of our existing operations and at the
same time, understand where management expects to take the business. I
would then design a system to accommodate our operations now and in the
future,” she said.
“Funny you should say that because, next, we are going to look at the concept
of specialization and inheritance. We will show how powerful the concept is
when used correctly, but how it can result in an inflexible system if used
incorrectly. So, lets move on!”.

Page 5

5ESI

Copyright © ESI Technology Corporation

Merging the Hand Class with Player

Name=John Doe
Dealer=OID

Hand=

Name=John Doe
Dealer=OID

Hand=

OID

Instance Services Player Class

AcceptCardAcceptCard

ValueValue

NameName

Instance Variables

Name
Dealer
Hand

Instance Variables

Name
Dealer
Hand

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

Array(0)=7
(1)=OID
(2)=OID

:

Array(0)=7
(1)=OID
(2)=OID

:

OID

Array ClassArray Class

“Let’s review the Player class,” you say as you pull out the design document.
“Up until now the Player class contained the instance variables Name and
Dealer. Now that we’ve merged the class Hand with Player, we will have to
add an instance variable to hold a pointer to an Array object. This is our first
attempt at reuse. Remember that most OO development environments contain
reusable classes. Most have a set of classes called Collections. An Array is a
Collection class. We don’t have time to talk about Collections in detail,
however, if most development environments provide these objects, they will
certainly have documentation that tells you how to use them. When you model
the Player class, refer to the documentation provided by your tool’s vendor.”

“So, why did you chose an Array object to hold a hand?” she asked. “Because,
it’s ordered. That is, it gives you control over the ordering of its entries and
later on we will have a need for that capability,” you reply. “Ok…,” she said
indifferently.

Page 6

6ESI

Copyright © ESI Technology Corporation

The Dealer as a Specialized Player

Instance Services Dealer Class

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

AcceptCardAcceptCard

ValueValue

NameName

Instance Variables

Name
Dealer
Hand
Deck

Players

Instance Variables

Name
Dealer
Hand
Deck

Players
DealDeal

ShuffleShuffle

Name=Susan Sharp
Dealer=OID

Hand=
Deck=OID

Players(1)=OID

Name=Susan Sharp
Dealer=OID

Hand=
Deck=OID

Players(1)=OID

OID

Name=John Doe
Dealer=OID

Hand=

Name=John Doe
Dealer=OID

Hand=

OID

Instance Services Player Class

AcceptCardAcceptCard

ValueValue

NameName

Instance Variables

Name
Dealer
Hand

Instance Variables

Name
Dealer
Hand

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

Array(0)=7
(1)=OID
(2)=OID

:

Array(0)=7
(1)=OID
(2)=OID

:

OID

Array ClassArray Class

Array(0)=7
(1)=OID
(2)=OID

:

Array(0)=7
(1)=OID
(2)=OID

:

OID

“Back in Chapter 3 we discussed the concepts of abstraction and how it gave
you a tool to separate meta information from real world scenarios. Also, how
we used the classification system to model these abstract levels and how we
could link them together in ‘kind-of’ relationships. We discovered how these
linkages are used by the compiler and the runtime system to implement the
concept of inheritance as well as promotion and overriding capabilities.” you
state. “Yes, I remember,” she said.

“Take a look at this drawing. Notice that the Dealer class is linked to the
Player class in a ‘kind-of’ relationship. It becomes a subclass to Player which
is its superclass. Dealer inherits certain variables and services from the Player
class. What are they?” you ask. “The AcceptCard method and the Name and
Value properties as well as the Name, Dealer and Hand instance variables.” she
replied. You take out your yellow marker and mark them as inherited.

“Notice how, through the concept of inheritance, the Dealer object becomes
more specialized than the Player. It displays more behavior than the Player,”
you remark. “Yes, inheritance is cool! I can see where it is the secret to
reusability as well as to extensibility. If we properly separate abstractions from
our real world objects, we can use the features of OO to build a system that can
be extended without being rewritten. It should be highly reusable as well,” she
said.

“You’re correct! Extracting different abstractions is the secret to building an
extensible system that results in reusability,” you reply. “Now, let’s see if we
can extend our design.”

Page 7

7ESI

Copyright © ESI Technology Corporation

Extracting the Person Abstraction

Instance Services Dealer Class

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

AcceptCardAcceptCard

ValueValue

NameName

Instance Variables

Name
Dealer
Hand
Deck

Players

Instance Variables

Name
Dealer
Hand
Deck

Players
DealDeal

ShuffleShuffle

Name=Susan Sharp
Dealer=OID

Hand=
Deck=OID

Players(1)=OID

Name=Susan Sharp
Dealer=OID

Hand=
Deck=OID

Players(1)=OID

OID

Name=John Doe
Dealer=OID

Hand=

Name=John Doe
Dealer=OID

Hand=

OID

Instance Services Player Class

AcceptCardAcceptCard

ValueValue

NameName

Instance Variables

Name
Dealer
Hand

Instance Variables

Name
Dealer
Hand

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

Array(0)=7
(1)=OID
(2)=OID

:

Array(0)=7
(1)=OID
(2)=OID

:

OID

Array ClassArray Class

Array(0)=7
(1)=OID
(2)=OID

:

Array(0)=7
(1)=OID
(2)=OID

:

OID

“Take a look at the design so far, in particular the Player and Dealer classes.
What do they have in common?” you ask.

“Well, these classes model human beings or persons. The Players are persons
and the Dealer is a person,” she said. “Also, not to digress, but one thing has
always bothered me about the Player and Dealer class hierarchy. Since Dealer
inherits from Player, the Dealer class is the most specialized and therefore
concrete. Right? If that is true, then the Player is more general and shouldn’t it
be an abstract class? If so, didn’t you say that abstract classes could not have
instances?”

“Great observation!,” you reply, “They are persons. To answer your concern
about abstract and concrete classes, you are correct. Generally a class that is
abstract cannot have instances. However, in our design we have declared both
of them concrete, therefore capable of bearing instances. The Dealer is just a
little more specialized than the Player. Just because one class is more general
than another that inherits from it, this does not mean it cannot bear instances.
So, how would you evolve this design to ‘fix’ what you see as two problems?”

Page 8

8ESI

Copyright © ESI Technology Corporation

A Generalized Person Hierarchy

Ins tance Serv ices Dealer Class

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

AcceptCardAcceptCard

ValueValue

NameName

Instance Var iab les

Name
Dealer
Hand
Deck

Players

Instance Var iab les

Name
Dealer
Hand
Deck

Players
DealDeal

ShuffleShuffle

Name=Susan Sharp
Dealer=OID
Hand=OID
Deck=OID

Players(1)=OID

Name=Susan Sharp
Dealer=OID
Hand=OID
Deck=OID

Players(1)=OID

OID

Name=John Doe
Dealer=OID
Hand=OID

Name=John Doe
Dealer=OID
Hand=OID

OID

Ins tance Serv ices Player Class

AcceptCardAcceptCard

ValueValue

NameName

Instance Var iab les

Name
Dealer
Hand

Instance Var iab les

Name
Dealer
Hand

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

Instance Services Person Class

AcceptCardAcceptCard

ValueValue

NameName
Instance Variables

Name
Dealer
Hand

Instance Variables

Name
Dealer
Hand

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

“I would extract the person abstraction and create a Person superclass to the
Player and Dealer classes,” she explains as she draws a new class diagram.
“Then, I would promote all the Player’s instance variable declarations, method
and properties to the Person class since the Dealer must continue to inherit
these components. I would then delete them from the Player class so that they
would be inherited from the Person class as well.”

“Wow,” you say, “You’re catching on fast. But notice how you were able to
generalize the design on the fly without disturbing the instances. They are still
instances of the classes they were instantiated from and do not know that the
abstraction changed above them. No database conversion here! How do you
feel about this design?”

“I really think this is generalized, I like it better than the original
design.Inheritance really is cool. It gives you a tool to model abstractions
with,” she said.

“You’re right again, inheritance is a cool tool,” you explain, “However, I don’t
want to burst your bubble but there is one little problem left to solve.
Unfortunately this problem has some side effects that are not pleasant. Let’s
take the design one step further.”

Page 9

9ESI

Copyright © ESI Technology Corporation

Extracting the Role Abstraction

Ins tance Serv ices Dealer Class

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

AcceptCardAcceptCard

ValueValue

NameName

Instance Var iab les

Name
Hand
Deck

Players

Instance Var iab les

Name
Hand
Deck

Players
DealDeal

ShuffleShuffle

Name=Susan Sharp
Dealer=OID
Hand=OID
Deck=OID

Players(1)=OID

Name=Susan Sharp
Dealer=OID
Hand=OID
Deck=OID

Players(1)=OID

OID

Name=Susan Sharp
Dealer=OID
Hand=OID

Name=Susan Sharp
Dealer=OID
Hand=OID

OID

Ins tance Serv ices Player Class

AcceptCardAcceptCard

ValueValue

NameName

Instance Var iab les

Name
Dealer
Hand

Instance Var iab les

Name
Dealer
Hand

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

Instance Services Person Class

AcceptCardAcceptCard

ValueValue

NameName
Instance Variables

Name
Hand

Instance Variables

Name
Hand

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

To illustrate the problem, you ask her, “In your off hours, do you sometimes
relax by returning to the casino to participate as a player?”.

“Yes, of course,” she replies.

“Ok, lets make an assumption here. Assume that all Player and Dealer objects
are stored in the computer persistently. That is, they exist on the computer until
someone explicitly deletes them. This is typical in a database system. So, as a
Dealer, you would exist in the computer as Susan Sharp the Dealer object and,
because you also play the game in your spare time, you would exist in the
computer as Susan Sharp the Player object. Here is the problem. This is what
we call the duplicate record problem. Without getting into the details, let me
tell you that it can cause problems. However, the real question is, how do you
fix it?” you ask.

“Hmm! Just by looking at the problem, it appears that we did not finish the job
of extracting abstractions. Yes, Player and Dealer objects are Person types,
however, Player and Dealer are also roles that people play. Give me a couple
of minutes, I think I can redesign this!”, she said confidently.

Page 10

10ESI

Copyright © ESI Technology Corporation

A More Extensible Design.

Hand=OID
Deck=OID

Players(1)=OID

Hand=OID
Deck=OID

Players(1)=OID

OID

Instance
Serv ices

Role Class

Instance
Variables

Hand

Instance
Variables

Hand

Instance
Serv ices

Person Class

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

NameName Instance
Variables

Name
Role

Instance
Variables

Name
Role

Instance
Serv ices

Dealer Class

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

ValueValue

Instance
Variables

Deck
Players

Instance
Variables

Deck
PlayersDealDeal

ShuffleShuffle

AcceptCardAcceptCard

Hand

Instance
Serv ices

Player Class

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

AcceptCardAcceptCard

ValueValue

Instance
Variables

Dealer

Instance
Variables

Dealer

Hand

Name=John Doe
Role()

Name=John Doe
Role()

OID

Hand=OID
Dealer=

Hand=OID
Dealer=

OID

Name=Susan Sharp
Role()
Role()

Name=Susan Sharp
Role()
Role()

OID

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

ValueValue

AcceptCardAcceptCard

Hand=OID
Dealer=

Hand=OID
Dealer=

OID

She takes out a blank piece of paper an starts to scribble furiously. When she
finishes, she explains the design. “The simplest way to do this is to first change
the class named Person to Role. Person is an abstract class and, in this case,
should not have any instances and it is already linked to the Player and Dealer
subclasses. Now delete the Name instance variable definition and Name
property from the Role class. Next create a new Person class and declare a
variable Name and its property Name. Additionally declare a new instance
variable called Role. This instance can be an M array or you can reuse a Set
collection. In any event, the collection will hold the Role objects the person
could play.”

“That’s great,” you say, “Notice how much more flexible the new design is
over the original design? It is now much more extensible than the original
design. Tell me, what would happen if you were to implement and use the first
design and then be required to switch to this design?”.

“You would have to run a database conversion I guess?” she replied.

“Exactly,” you say, “This is why it is important to separate abstractions. This
leads to flexibility and is the cornerstone to extensibility and reusability.”

She looks a little puzzled like something is bothering her. You ask, what’s the
problem? She says, “With the flexibility, the design got more complex. Won’t
it be a little harder to support and won’t is be slower to execute?”.

“Ah, this is generally the trade off. But the answer is simple. Is it better to paint
yourself into a corner or add a little complexity and gain reusability and
extensibility?” you ask.

Page 11

11ESI

Copyright © ESI Technology Corporation

Implementing the Original Design

Instance Services Dealer Class

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

AcceptCardAcceptCard

ValueValue

NameName

Instance Variables

Name
Dealer
Hand
Deck

Players

Instance Variables

Name
Dealer
Hand
Deck

Players
DealDeal

ShuffleShuffle

Name=Susan Sharp
Dealer=OID

Hand=
Deck=OID

Players(1)=OID

Name=Susan Sharp
Dealer=OID

Hand=
Deck=OID

Players(1)=OID

OID

Name=John Doe
Dealer=OID

Hand=

Name=John Doe
Dealer=OID

Hand=

OID

Instance Services Player Class

AcceptCardAcceptCard

ValueValue

NameName

Instance Variables

Name
Dealer
Hand

Instance Variables

Name
Dealer
Hand

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

Array(0)=7
(1)=OID
(2)=OID

:

Array(0)=7
(1)=OID
(2)=OID

:

OID

Array ClassArray Class

Array(0)=7
(1)=OID
(2)=OID

:

Array(0)=7
(1)=OID
(2)=OID

:

OID

“What are we going to do?”, she asked. “Well,” you reply, “Since I know for a
fact that my company will never extend this design, we are going to continue
with the original design. It is adequate for the requirements of this system, that
is a simple Poker game. Besides, I only have another day here!”
“So what do I do next?” she asked. You then hand her a list of instructions that
will guide her through the programming task of implementing the original
design.
1) First design and code the Player class. Create state variables: Hand (an
array for the cards), Name (player’s name). Now add the operations:
AcceptCard (method), Reset (method), Value (property) which represents the
value of the player’s Hand and Name (property).
2) If you use an Array collection for the Hand and if your development
environment supports automatic instantiation and binding to instance variables,
then use it. In EsiObjects the Hand variable would be declared as Initialized
and bound to a Base$Array object.
3) Now code the AcceptCard. It should simply take in a Card object and add it
to its Hand array.
4) Code the Name as a get/set property.
5) The Value property should be left for now since this is the complex portion
of the game – determining value. So leave it for now.
6) Please note: When the Player is destroyed the Hand array is cleaned up
(since it’s a Child object) but any Cards in the Array are NOT destroyed.
Collections do not destroy their contents and since the Cards are outside the
scope of the Player, they are not affected.

Page 12

12ESI

Copyright © ESI Technology Corporation

Implementing the Original Design

Instance Services Dealer Class

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

AcceptCardAcceptCard

ValueValue

NameName

Instance Variables

Name
Dealer
Hand
Deck

Players

Instance Variables

Name
Dealer
Hand
Deck

Players
DealDeal

ShuffleShuffle

Name=Susan Sharp
Dealer=OID

Hand=
Deck=OID

Players(1)=OID

Name=Susan Sharp
Dealer=OID

Hand=
Deck=OID

Players(1)=OID

OID

Name=John Doe
Dealer=OID

Hand=

Name=John Doe
Dealer=OID

Hand=

OID

Instance Services Player Class

AcceptCardAcceptCard

ValueValue

NameName

Instance Variables

Name
Dealer
Hand

Instance Variables

Name
Dealer
Hand

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

Array(0)=7
(1)=OID
(2)=OID

:

Array(0)=7
(1)=OID
(2)=OID

:

OID

Array ClassArray Class

Array(0)=7
(1)=OID
(2)=OID

:

Array(0)=7
(1)=OID
(2)=OID

:

OID

7) Reset should simply clear out the Player’s Hand array.
8) Test the Player object and AcceptCard method etc.
9) Now design and code the Dealer class. Since the Dealer is a specialized
Player, the Dealer should be subclassed to Player. Note the reuse – a Dealer is
automatically a Player.
10) Here is the state of a Dealer: Deck (a Deck object), Players (an array of
Players.) Here are the operations: Setup (intialize game), AddPlayer, Shuffle,
Deal, Reset.
11) Variable Deck is initialized to a Deck object.
12) Players can be a static variable (it will be a simple internal M array.)
13) The main complexity here is to figure out how best to populate the Player
array. AddPlayer should accept a Player object and add it to the Player array.
The Dealer should also add itself to the Player array. This could be done with
a constructor method (which would need to be overridden.) The Dealer should
be placed at the end of the Player array since the Player array will be used for
dealing – thus the order of the deal should have the dealer as the last one to get
a card. Any number of possible solutions can be used.
14) Since the AddPlayer method will accept a Player object you should
validate the input to make sure the input is a valid Player object. Your
development system should have a function to validate the input parameter as
an object of Player type.

Page 13

13ESI

Copyright © ESI Technology Corporation

Implementing the Original Design

Instance Services Dealer Class

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

AcceptCardAcceptCard

ValueValue

NameName

Instance Variables

Name
Dealer
Hand
Deck

Players

Instance Variables

Name
Dealer
Hand
Deck

Players
DealDeal

ShuffleShuffle

Name=Susan Sharp
Dealer=OID

Hand=
Deck=OID

Players(1)=OID

Name=Susan Sharp
Dealer=OID

Hand=
Deck=OID

Players(1)=OID

OID

Name=John Doe
Dealer=OID

Hand=

Name=John Doe
Dealer=OID

Hand=

OID

Instance Services Player Class

AcceptCardAcceptCard

ValueValue

NameName

Instance Variables

Name
Dealer
Hand

Instance Variables

Name
Dealer
Hand

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

Array(0)=7
(1)=OID
(2)=OID

:

Array(0)=7
(1)=OID
(2)=OID

:

OID

Array ClassArray Class

Array(0)=7
(1)=OID
(2)=OID

:

Array(0)=7
(1)=OID
(2)=OID

:

OID

15) Now code Shuffle. It simply calls Shuffle on the Deck object.

16) Deal accepts a number on input which is the number of Cards to deal
(default to 5). If the number of Cards to deal exceeds the number of cards
available to deal to all players, the Deal method could return –1 or something.
The dealer should pass a card from the Deck to each player in the same way a
real dealer deals cards. The first card to the first player, the second card to the
second player, etc. The Dealer is last in the deal order. Repeat for the number
of cards specified to deal.

17) Override the Reset method in Player. If your implementation has DO
$SUPER capabilities, use it to do the work of Reset in the Player class. In
addition, the Reset in Dealer should call Reset in the Deck. (Shuffle could also
be called, unless you wish to keep Reset and Shuffle as two distinct operations)

18) Using your implementation’s means of creating objects interactively (the
Xecute Shell in EsiObjects), create Dealer and Player objects. Add Player
objects to the Dealer. If you have an Object Browser, use it to inspect the
internals of the the Dealer and Player objects. Does the Player array in Dealer
look complete and correct?

19) Try the Shuffle and Deal methods. Again, if you have an Object Browser,
use it to check Player’s hands etc. Try Reset too. Make sure that shuffling
happens between each iteration of a “game”, whether it’s done in Reset or as a
separate method call to Shuffle directly.

Page 14

14ESI

Copyright © ESI Technology Corporation

Implementing the Original Design

Instance Services Dealer Class

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

AcceptCardAcceptCard

ValueValue

NameName

Instance Variables

Name
Dealer
Hand
Deck

Players

Instance Variables

Name
Dealer
Hand
Deck

Players
DealDeal

ShuffleShuffle

Name=Susan Sharp
Dealer=OID

Hand=
Deck=OID

Players(1)=OID

Name=Susan Sharp
Dealer=OID

Hand=
Deck=OID

Players(1)=OID

OID

Name=John Doe
Dealer=OID

Hand=

Name=John Doe
Dealer=OID

Hand=

OID

Instance Services Player Class

AcceptCardAcceptCard

ValueValue

NameName

Instance Variables

Name
Dealer
Hand

Instance Variables

Name
Dealer
Hand

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

Array(0)=7
(1)=OID
(2)=OID

:

Array(0)=7
(1)=OID
(2)=OID

:

OID

Array ClassArray Class

Array(0)=7
(1)=OID
(2)=OID

:

Array(0)=7
(1)=OID
(2)=OID

:

OID

At this point you should have a basic shell of a game except for the critical part
– determining a winner. We will leave this for the next lesson when we will
introduce the concept of a Hand Analyzer. It will introduce you to the concept
of event processing which is extremely complimentary to object orientation.
We have not provided for the destruction of the Dealer or Player objects. The
Deck and Card objects and other array objects are all cleaned up when the
Dealer or Player are destroyed. Usually the application running the game will
be responsible for creating and destroying the Dealer and Player objects. No
DESTROY methods are needed.

Page 15

15ESI

Copyright © ESI Technology Corporation

Lesson Summary

This lesson tried to show how a class can be collapsed into another class when
it is a logical extension but does not have any individual behavior. We also
covered how subclassing and inheritance can be used to great advantage, but
also showed how it can create problems if the design is incorrectly applied. We
then covered the instructions for adding the Player and Dealer classes and their
services.

Except for some embellishment, the model side of the game is complete. Feel
free to expand upon the game.

Page 16

16ESI

Copyright © ESI Technology Corporation

End of Lesson - What’s Next?

The next lesson (Lesson 6) will continue with the next iteration of the Poker
Game. This lesson will explore adding a HandAnalyzer object to the system.
This is an object that knows how to analyze a poker hand, forming the needed
functionality to determine a winner. The new concept covered in this lesson
will be Events and how to use them to broadcast information such as a
winning hand.

